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Introduction
The man who is denied the opportunities of taking decisions of importance 
begins to regard as important the decisions he is allowed to take. He 
becomes fussy about filing, keen on seeing that pencils are sharpened, 
eager to ensure that the windows are open (or shut) and apt to use two 
or three different-coloured inks.

—c. northcote Parkinson

statistics are not popular. one might even say they are disliked. not by statisti-
cians, of course, but by the millions who have to cope with the steady flow of 
statistics supporting all kinds of assertions, opinions, and theories. received 
wisdom harrumphs, “You can prove anything by statistics”—and then sneers, 
“Lies, damned lies, and statistics.” my sympathies do not lie with these senti-
ments, which, i believe, have their origins in the misuse of statistics. i believe 
that statisticians are skilled in their work and act professionally, sincerely 
desiring their results to be interpreted and used correctly. the misuse arises 
when statements by those who have limited understanding of the subject are 
claimed to be justified by statistics.

the misuse is frequently due to misunderstanding. results of statistical inves-
tigations often have to be worded with many qualifications and precise defini-
tions, and this does not ease the understanding of the casual reader. misguided 
attempts to summarize or simplify statistical findings are another cause of 
distortion. and undoubtedly an element of intentional misrepresentation is 
sometimes involved. often, the misuse arises from a desperate attempt to 
justify a viewpoint with what is seen to be a scientific statement. Hence the 
suggestion that statistics are sometimes used as a drunk uses a lamp post: 
more for support than illumination.

this book is not for practitioners or would-be practitioners of statistics: it 
is, as the title implies, for those who have to make decisions on the basis of 
statistics. most of us, at one time or another, make use of statistics. the use 
may be to make a trivial decision, such as buying a tube of toothpaste in the 
face of claims that nine out of ten dentists recommend it; or it may be to com-
mit a large sum of money to a building project on the basis of an anticipated 
increase in sales. We are decision makers in our work and in our domestic 
affairs, and our decisions are frequently based on or influenced by statistical 
considerations.
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my aim in writing this book is to help decision makers to appreciate what the 
statistics are saying and what they are not saying. in order to have this appre-
ciation, it is not necessary to understand in detail how the statistics have been 
processed. the key is to understand the underlying perspective that is the 
foundation of the various procedures used and thereby understand the char-
acteristic features of results from statistical investigations. this is the under-
standing that this book is intended to provide, by means of easy-to-follow 
explanations of basic methods and overviews of more complicated methods.

the decision makers i have primarily in mind are managers in business and 
industry. Business decisions are frequently taken on the basis of statistics. 
Whether to expand, whether to move into new areas, or whether to cut 
back on investment can make a big difference to the fortunes of a company. 
the building of houses, new roads, and new facilities of various kinds affects 
large numbers of people, and getting it wrong can be economically and socially 
disastrous for years ahead. those who have to make such decisions are 
rarely statisticians, but the evidence on which they have to operate, whether  
in-house or from consultants, is frequently based on statistics. these  
people—the executives, planners, and project managers in all kinds of  
business—i aim to address, in the belief that, while the methods of statistics 
can be complicated, the meaning of statistics is not.

a better appreciation of statistics not only helps the decision makers in 
assessing what the statisticians have concluded, but also allows a more reliable 
judgment at the outset of what they should be asked to provide—recognizing 
what is possible, what the limitations are, and with what levels of uncertainty 
the answers are likely to be qualified. this is particularly important when con-
sultants are to be involved, their fees being not insignificant.

i also have in mind students—the managers of the future—but not students 
who are studying statistics, as there are many excellent text books that they 
will know of and will be using (though some beginners might welcome a 
friendly introduction to the subject). the students who, i believe, will find 
this book useful are those who need to have an understanding of statistics 
without being involved directly in applying statistical methods. many students 
of medicine, engineering, social sciences, and business studies, for example, fall 
into this category.

as i mentioned previously, we are all subjected to a regular deluge of sta-
tistics in our domestic affairs, and i therefore believe that interested non-
professionals would find the book useful in helping them to adopt a more 
informed and critical view. readers of newspapers and viewers of television, 
and that includes most of us, have a daily dose of statistics. We are told that 
sixty percent of the population think the government is doing a poor job, 
that there is more chance of being murdered than of winning a million dollars 
in the lottery, that there are more chickens in the country than people, and  
so on. shoppers are faced with claims regarding price differentials and value 
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for money. advertisements constantly make claims for products based on 
statistical evidence: “ninety percent of women looked younger after using 
formula 39,” and so on. if this book encourages just a few people to under-
stand statistics a little better and thereby question statistics sensibly, rather 
than simply dismissing all statistics as rubbish, it will have been worthwhile.

in its most restricted meaning, statistics (plural) are systematically collected 
related facts expressed numerically or descriptively, such as lists of prices, 
weights, birthdays or whatever. statistics (singular) is a science involving the 
processing of the facts—the raw data—to produce useful conclusions. in total, 
we have a procedure that starts with facts and moves by mathematical pro-
cessing through to final statements, which, although factual, involve probability 
and uncertainty.

We will encounter areas where it is easy to be misled. We will see that we are 
sometimes misled because the conclusions we are faced with are not giving 
the whole story. But we shall also see that we can be misled by our own mis-
understanding of what we are being told. We are, after all, not statisticians, but 
we need to understand what the statisticians are saying. our task is to reach 
that necessary level of understanding without having to become proficient in 
the mathematical procedures involved.

the chapters of the book progress in a logical sequence, though it is not the 
sequence usually adopted in books aimed at the teaching of statistics. it is a 
sequence which allows the reader readily to find the section appropriate for 
his or her immediate needs. most of the chapters are well subdivided, which 
assists further in this respect.

Part i shows why statistics involves uncertainties. this leads to explanations 
of the basics of probability. of particular interest are examples of how mis-
use of probability leads to numerous errors in the media and even in legal 
proceedings.

Part ii concerns raw data—how data can be obtained and the various meth-
ods for sampling it. Data may be descriptive, such as geographical location or 
eye color, or numerical. the various ways that data can be presented and how 
different impressions of the meaning of the data can arise are discussed.

Part iii examines how data samples are summarized and characterized.  
a sample can give us information relating to the much larger pool of data from 
which the sample was obtained. By calculating confidence intervals, we see 
how the concept of reliability of our conclusions arises.

Part iV investigates comparisons that can be made using the characteristics of 
our samples. We need to search for similarities and differences, and to recog-
nize whether they are real or imaginary.

Part V moves to the question of whether there are relationships between two 
or more different features. as the number of features represented in the data 
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increases, the examination of relationships becomes more involved and is usu-
ally undertaken with the help of computer packages. for such methods, i have 
given an overview of what is being done and what can be achieved.

Part Vi deals with forecasting. Practical examples are worked through to illustrate 
the appropriate methods and the variety of situations that can be dealt with.

the final part, Part Vii, is devoted to big data. this is the most important 
development in the application of statistics that has arisen in recent times. Big, 
in this context, means enormous—so much so that it has affected our basic 
concepts in statistical thinking.

Where examples of data and collections of data are given, they are realistic 
insofar as they illustrate what needs to be explained. But there the realism 
ends. i have used simple numbers—often small discrete numbers—for the 
sake of clarity. the samples that i have shown are small—too small to be 
considered adequate. in real investigations, samples need to be as large as can 
be reasonably obtained, but my use of small samples makes the explanation of 
the processing easier to follow.

the examples i have included have been kept to a minimum for the sake of 
brevity. i have taken the view that one example explained clearly, and perhaps 
at length, is better than half a dozen all of which might confuse in the same 
way.

to clarify the calculations, i have retained them within the main text rather 
than relegating them to appendices with formal mathematical presentation. 
this allows me to add explanatory comments as the calculations proceed and 
allows the reader to skip the arithmetic while following the procedure.

in describing procedures and calculations, i have adopted the stance that  
we—that is to say you, the reader, and i—are doing the calculations. it would 
have been messy to repeatedly refer to some third person, even though  
i realize that you may be predominantly concerned with having to examine 
and assess procedures and calculations carried out by someone else.

i have given references by quoting author and year in the main text, the details 
being listed at the end of the book.

if you have read this far, i hope i have encouraged you to overcome any preju-
dices you might entertain against the elegant pastime of statistics and read on. 
Believe it or not, statistics is a fascinating subject. once you get into the appro-
priate way of thinking, it can be as addictive as crossword puzzles or sudoku. 
as a branch of mathematics, it is unique in requiring only simple arithmetic: 
the clever bit is getting your head around what is really required.

if you have read this far and happen to be a statistician, it must be because you 
are curious to see if i have got everything right. Being a statistician, you will 
appreciate that certainty is difficult if not impossible to achieve, so please let 
me know of any mistakes you find.



Uncertainties
In this world nothing can be said to be certain, except death and taxes.

—Benjamin Franklin

We need to understand the reasons why statistics embodies uncertainties. This will give us a feel 

for what statistics can do and what it cannot do, what we can expect from it and what we should not 

expect. This will prepare us for critically viewing the statistics and the conclusions from them that 

we are presented with. Some understanding of basic probability, which is required to appreciate 

uncertainty, is presented without assuming any previous knowledge on the part of the reader.

I
P A R T  



The Scarcity  
of Certainty
What Time Will the Next Earthquake Be?

On the twenty-second of October, 2012, in Italy, six geophysicists and a  
government civil protection officer were sentenced to six years in prison on 
charges of manslaughter for underestimating the risk of a serious earthquake 
in the vicinity of the city of L’Aquila. Following several seismic shocks, the 
seven had met in committee on March 31, 2009, to consider the risk of a 
major earthquake. They recorded three main conclusions: that earthquakes 
are not predictable, that the L’Aquila region has the highest seismic risk in Italy, 
and that a large earthquake in the short term was unlikely. On April 6, a major 
earthquake struck with the loss of more than 300 lives.

The court’s treatment of the seismologists created concern not only among 
seismologists working in other countries, but also among experts in other 
fields who are concerned with risk assessment. All seven filed appeals in 
March 2013, but it seemed unlikely that there would be a ruling on the case 
for some years. Whatever that may be, the case highlights the difficulties and 
the dangers in making decisions that have to be based on data that are statisti-
cal. If it is decided that an event is unlikely, but it then occurs, was the decision 
wrong? The correct answer is no, because unlikely events do happen—but 
there is a common misperception that the answer is yes.

An unfortunate consequence of this perception is either that it becomes  
more and more difficult to find anyone who is prepared to make a decision 
where risk is involved, or else that decisions become based on worst-case 
scenarios and thereby frequently create unwarranted disruption and expense. 

1
C H A P T E R 
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There are instances of this in relation to health and safety legislation. Some 
school teachers have refused to take children on school field trips in case an 
accident occurs. Warnings are posted at gas stations instructing customers 
not to use their mobile phones near the pumps, although there has never 
been a reported case of a fire having been caused by their use. Homeowners 
are hesitant whether to clear snow from their sidewalk, for fear inadequate 
clearance might result in a passerby suffering a fall that could lead to a claim 
for compensation. A traditional British game, conkers, played by schoolchildren,  
involves two contestants, each of whom has a horse chestnut at the end of 
a length of string. Taking turns, each player attempts to shatter the other’s  
suspended conker by whirling his or her own conker against it. The  playground 
is scattered with fragments! The game has been played for generations with 
no public concern, but some schools in the UK now insist that the children 
must wear gloves and goggles.

Even the trivial decisions we make every day are often based on statistical data 
and have a degree of uncertainty. We have a meeting to get to, and we decide 
to catch the 9:20 AM train. We know from past experience that the train is 
usually on time, and we have never known it not to run. If, on the other hand, 
we knew that the train were late more often than not, then we would prob-
ably decide to catch an earlier one. Of course, we cannot be certain that the 
train will be on time. We cannot even be certain that the meeting will take 
place.

There are, of course, decisions we can make that are based on matters 
we can be certain of, but these are fairly inconsequential routine activities  
or observations encountered on a regular basis. The decisions are based on 
well-established facts. The difficult decisions—the important ones—usually 
involve issues that are uncertain to some degree.

Proof is often adduced as justification for decisions, but even here we have to 
be careful to recognize that qualifications or exceptions may apply. A court 
of law demands proof, but there is the qualification that it should be proof 
beyond a reasonable doubt. Scientists are said to be in the business of prov-
ing things by experiment and observation. In reality, scientists are able to do 
no more than provide theories that explain the way things work and allow 
predictions to be made. These theories are always considered to be provi-
sional. Should they fail to make correct predictions, they will be modified or 
replaced. We frequently hear that science has proved this, that, and the other, 
when it has done no such thing. It has, of course, provided explanations and 
numerous correct predictions, from which our knowledge has increased and 
on which our technological advances have been based.

A statement may be true by definition. In mathematics, we define 2 to be 
the sum of 1 and 1, so that 1 plus 1 is always equal to 2. Other numbers are 
defined accordingly and, by defining mathematical processes—multiplication, 
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taking the square root, and so forth—in a precise way, we can ensure that 
our mathematical proofs are indeed proofs. The rules of logic, based again on 
definition, lead to proofs. A valid syllogism—for example, “All cows eat grass; 
this animal is a cow; therefore, this animal eats grass”—is beyond dispute, 
though the truth of the conclusion does, of course, depend on the truth of 
the initial propositions. Statements that are true by definition do not add to 
our knowledge—for they are simply expressing it in a different way—but they 
may add usefully to our understanding.

Common sense is frequently used as a substitute for proof. We recognize a 
proposition as obvious, and we are then critical when we see investigations 
sponsored to show it to be correct. A waste of time and money, we conclude. 
But, as Duncan Watts (2011) demonstrates comprehensively, although com-
mon sense is useful in guiding us through our numerous daily activities, it is 
quite unreliable when we make judgments on more complex matters. Indeed, 
we can often recognize both a situation and its opposite as being obvious, 
depending on which we are told is correct. Children are healthier now than 
they were forty years ago. That seems obvious enough: health care is now 
better and there is better guidance on diet. But what about the opposite 
proposition, that children were healthier forty years ago than they are now? 
Common sense tells us this also is true: children then had more exercise, less 
time in front of the computer screen, and a simpler healthier diet.

When we use the justification of common sense to simply reinforce our own 
prejudices, the consequences may be trivial; but when those responsible for 
important decisions base them on common sense, the consequences can be 
serious. Government policy, company strategy, and marketing initiatives, for 
example, affect the well-being of many people and may do so for a long time.

Daniel Kahneman (2013) has produced an extensive study of how we suffer 
from errors and make bad judgments as a result of what he refers to as fast 
thinking. Our intuition is rarely reliable, and we are easily unconsciously influ-
enced by circumstances. Our feeling for how much we should pay for some-
thing is influenced by the asking price. If you are asked whether Ghandi was 
more than 114 years old when he died, you will suggest a higher age than if the 
question asked whether he was more than 35 years old when he died.

There is a somewhat different use of the word obvious. The conclusion from 
a piece of reasoning or a calculation may be obvious to you, but the person 
sitting next to you may not find it so or even understand it. When tutoring 
students, I avoid the word. What is obvious to one person may not be obvious 
to another. For that reason, you will not encounter the word in the remainder 
of this book.



Sources of 
Uncertainty
Why “Sure Thing!” Rarely Is

The results of any investigation will, of course, be uncertain, if not completely 
wrong, if the information on which the investigation is based is not correct. 
However, in statistical investigations there are additional sources of  uncertainty, 
because of the need to extract a neat and useful conclusion from information 
that may be extensive and variable.

Statistical Data
Statements that appear at first sight to be clear and unambiguous often hide 
a great deal of uncertainty. In the previous chapter, I used the proposition  
“All cows eat grass” as an example of an acceptable starting point from which 
to draw a logical conclusion. Looking closely, you can see that it is a statistical 
statement. It relates cows to the eating of grass via the word all, which is in 
effect numerical. If I had said “100% of cows eat grass,” the statistical nature 
of the statement would have been more apparent. Uncertainties in the state-
ment arise even before we question the statistical claim of 100%. There is the 
question of what is included in the definitions of cows and eating grass. Am I 
including young cows, sick cows, or cows in all parts of the world? Do I mean 
eating grass and nothing else, or eating grass if they were given it? And what 
do I include in the term grass?

This may seem to be rather pedantic, but it illustrates that we have to  question 
what, precisely, the things are that a statistical statement claims to relate in 

2
C H A P T E R 
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some way. A more realistic example could relate to unemployment. In Wabash, 
three out of four men are unemployed, we may read. How have the boundar-
ies of the district been defined for the survey? Is it Wabash town, or is it the 
total extent covered by Wabash County? Then there is the question of how 
we are to understand the term unemployed. Does it include the retired, the 
sick, the imprisoned, the part-time workers, the casual workers, the voluntary 
workers, or the rich who have no desire or need to work? The way the terms 
are defined needs to be questioned before the statistics can be considered to 
have real meaning.

Turning now to the statistical aspects, we appreciate that data are gathered 
from many different sources. Opinion polls are fruitful and popular. We seem 
to spend as much time prior to an election listening to the details of polls as 
we do listening to the election results being declared. Data collected this way 
cannot be taken at face value and should always be questioned. Do people tell 
the truth when asked for their opinions or their activities, or even their ages 
or where they live? Probably not always, but who can really say? Even if they 
have every intention of being truthful, there is the possibility of misunder-
standing the question. More commonly, perhaps, the question forces a difficult 
judgment or recollection. “Do you replace a light bulb once a week, once a 
month, or once every three months?” “When did you last speak to a police-
man or policewoman?” In addition, many questions require answers that are 
completely subjective.

Statistics are often taken from “official sources,” and this suggests reliability. 
However, the question remains how the figures were obtained. We would 
expect that the number of cars on the roads would be known quite  accurately, 
whereas we accept that the number of illegal immigrants in the country is vague. 
Between these extremes are debatable areas. The number of street muggings 
could appear to be low if only the reported and successfully  prosecuted cases 
were included, but could appear much greater if attempted muggings, or even 
estimated unreported muggings, were included.

Statistics from authoritative sources are sometimes simply not true. Charles 
Seife (2010) gives numerous examples ranging from intentional lies to state-
ments that are impossible to verify. US Senator Joe McCarthy in 1950 claimed 
to have a list of 205 names of people working in the US State Department 
who were members of the Communist Party. The claim had serious repercus-
sions, yet he never produced the names, and no evidence was ever found that 
he had such a list. At the other end of the scale, such as when in 1999 UN 
Secretary-General Kofi Annan declared a Bosnian boy to be the six billionth 
person on Earth, the repercussions may be trivial.

When statistics are quoted, a reference to the source is frequently given. This 
is, of course, good practice, but it does impart an air of authority that may 
not be warranted. Rarely does the recipient follow up on the reference to 
check its validity. The originator may not even have checked the reference but  
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simply have grabbed it from somewhere else. Worse is the situation where 
the originator has been unfairly selective in his or her choice of statistics from 
the referenced source. Be aware that organizations with a particular agenda 
may, in their literature, give references to publications from the same organiza-
tion, or to those closely allied with it (Taverne 2005: 82-86).

Wikipedia is now an important and frequently used source of information. 
Bear in mind that it is based on contributions from anyone who wishes to 
contribute. A consequential degree of regulation results, but the information 
Wikipedia contains at any moment in time is not necessarily correct.

So far we have been considering statistical data, which is in a sense second-
hand. It is derived from what others, who have no way of determining the 
truth of what they quote, tell us. But there are other situations where objec-
tive measurements are made and data are provided by those who have made 
the measurements. Factories supplying foodstuffs have weighing machines for 
controlling the amount of jam or corn flakes that goes into each container. 
The weighing machines are inspected periodically to ensure accuracy. Though 
accurate, the machines will be imprecise to some degree. That is to say, when 
the machine registers one kilogram the true weight will be one kilogram plus 
or minus a small possible error. The smaller the possible error, the greater the 
precision, but there still remains a degree of uncertainty.

A company supplying car parts has to ensure that a bracket, say, is 10 cm long 
plus or minus 0.5 mm. The latitude permitted is referred to as the tolerance. 
Within the company, regular measurements of the lengths of brackets are 
made as they are produced. These measurements, to an accuracy of perhaps 
0.1 mm or less, provide a data sample, which when properly processed pro-
vides the company with warnings that the tolerance is being or in danger of 
being exceeded. Such situations result in statistical data that is reliable to 
a degree dependent on measuring equipment, and with this knowledge the 
degree of reliability can be quantified.

Results of investigations in the various science and technology disciplines are 
published in reputable and often long-established journals. A process of refer-
eeing the articles submitted to the journals provides good assurance that the 
results quoted are valid and that any provisos are made clear. References to 
such journals are a good sign.

Processing the Data
Raw data, which as you have seen already have a degree of uncertainty, are 
processed by mathematical procedures to allow you to draw conclusions. 
Recalling what I have said about the truth of mathematics, you might think 
that the processing will introduce no additional uncertainty. If raw data are 
factual, we might expect that our conclusions would be factual. However,  
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as you shall see, processing introduces further uncertainty. But you will also 
see that the conclusions are factual. They are factual statements expressing 
the probability of something being true, or expressing the uncertainty involved 
in stating that something is true. For example, we might have a conclusion 
saying that hair restorer A is more effective than hair restorer B with a 90% 
certainty, or  saying that the weight of a randomly chosen bag of sugar is half a 
kilogram within one hundredth of a kilogram either way, with a 99% certainty. 
Both statements are factually correct, but neither gives us a precise conclu-
sion regarding the performance of a particular treatment of hair restorer or 
the weight of a specific bag of sugar.

When such statements are made without the necessary qualifications of 
uncertainty, they appear to provide proof. “Hair restorer A is more effective 
than hair restorer B” and “This bag of sugar weighs half a kilogram” are the 
kinds of statements we usually encounter. With regard to the bag of sugar, 
the statement is near enough correct, and it would be considered extremely 
pedantic to insist on a precise statement. But with regard to the hair restorer, 
the situation is much more serious. The statement, when looked at carefully, 
is seen to convey almost no useful information, yet it is likely to encourage 
customers to spend their money on the product.

The uncertainties that arise in statistical processing do not reflect any inad-
equacy of the mathematical procedures. They arise in the summarizing of the 
data and in the use of samples to predict the characteristics of the populations 
from which the samples were drawn.

Raw data is summarized because there is generally too much to allow easy 
recognition of the important features. Simply picking out bits and pieces to 
illustrate underlying principles can lead to incorrect conclusions but may 
sometimes be done to justify prejudiced views. Summarizing—averaging, for 
example—is carried out according to accepted procedures. Nevertheless, any 
procedure that reduces the data necessarily results in loss of information and 
therefore some uncertainty.

The second source of uncertainty lies in the difference between a sample 
and a population, and in the attempt to characterize a population using the 
features of a sample. It must be recognized that the words are being used as 
statisticians use them. A population in the statistical sense is not a group of 
people living in a particular area (though it could be, in a study involving actual 
people living in some area of interest).

A sample is more easily explained first. It is a set of data of the same kind 
obtained by some consistent process. We could ask shoppers coming out 
of a supermarket how many items they purchased. The list of the number of 
items that we obtained would be the sample. The size of the sample would be 
the number of shoppers we asked, which would correspond to the number of 
data in our sample. In this example, the population would be the replies from 
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the larger number of shoppers or potential shoppers that might have been 
asked, including of course the ones who were actually asked.

Sometimes the sample embraces the entire population. If we produce, by a 
novel process, 100 pewter tankards and measure and weigh each one to exam-
ine the consistency of the process, our sample corresponds to the population. 
The monthly profits made by a company over a period of time comprise the 
entire population of results relating to that particular company and can be 
treated as such to derive performance figures for the company. If, however, the 
accumulated data were considered to be representative of similar companies, 
then they would be treated as a sample drawn from a larger population.

My wife’s birthday book shows the birthdays of relatives and friends that she 
wishes to recall. The number of birthdays in each month of the year is as 
follows.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 3 6 7 5 3 2 4 7 7 9 7

The data can be considered a sample or a population, depending on what we 
wish to do. Considering the whole of the world population or a hypothetical 
large collection of people, the data is a sample. It is not a very reliable sample 
because it suggests that many more people are born in November than in 
January. However, in terms of the people actually included, the data are the 
population; and it is true to say that the probability of selecting a person at 
random from the book and finding his or her birthday to be in November 
would be 9/61 (=0.15) rather than a probability of 1/12 (=0.08) that we would 
expect in a much larger sample.

In each of these examples—the shoppers, the pewter mugs, and so on—the 
population is finite. In many situations, however, the population is hypotheti-
cal and considered to be infinite. If we make repeated measurements of the  
diameter of the Moon, in order to improve the accuracy of our result, we 
can consider that the measurements are a sample drawn from a population 
consisting of an infinite number of possible measurements. If we carry out an 
experiment to study the effectiveness of a new rat poison, using a sample of 
rats, we would consider the results applicable to a hypothetical infinite popu-
lation of rats.

Because the sample is assumed to be representative of the population from 
which it is drawn, it is said to be a random sample. Random means that of all 
the possibilities, each is equally likely to be chosen. Thus if we deal 6 cards 
from a well-shuffled pack of cards, the selection of 6 cards is a random sample 
from the population of 52 cards. The randomness that is achieved in practice 
depends on the method of sampling, and it can be difficult in many real situa-
tions to ensure that the sample is random. Even when it is random, it is simply 
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one of a very large number of possible random samples that might have been 
selected. Because the subsequent processing is restricted to the data in the 
sample that happens to have been selected, the results of the processing, when 
used to reveal characteristics of the population, will carry uncertainties.

A 6-card sample is very likely to be random; but returning to the supermar-
ket shoppers, you can see the difficulty of obtaining a random sample. Do we 
stop men and women, or just women? If both, do we take account of there 
being more women shoppers than men? And should we spread our enqui-
ries through the day? Perhaps different days of the week would give different 
results. And what about time of year? And so on. We could restrict the scope 
of our sample to, say, women shoppers on Friday afternoons in summer, but 
this of course restricts our population similarly, and restricts the scope of the 
results that we will obtain from our statistical analysis. Any attempts to apply 
the results more generally—to women shoppers on any afternoon, summer 
or winter, say—will introduce further uncertainties.

It should be noted that the information we can obtain, and the uncertainty 
associated with it, depend entirely on the size of the sample and not on the 
size of the population from which it is drawn. A poll of 1,000 potential voters 
will yield the same information whether it relates to a population of 1 million 
or 10 million potential voters. The absolute size of the sample, rather than the 
relative size of the sample, is the key value to note.



Probability
How Bad Statistics Can Put You in Jail

To appreciate statistical analysis it is necessary to have some  understanding  
of probability. Surprisingly, perhaps, not very much is required. Knowing how 
several different probabilities work together in combination and how the 
probability of occurrence of an event is affected by an overriding condition 
are all that are needed for most purposes.

Probability Defined
Because of the uncertainties discussed in the preceding chapter, statistical 
results are quoted together with an indication of the probability of the results 
being correct. Thus it is necessary to have an understanding of basic probabil-
ity, which fortunately is not difficult to achieve. Probability is defined as the ratio 
of all equally likely favorable outcomes to all possible equally likely outcomes. 
It is usually expressed as a fraction or a decimal and must lie between zero 
denoting impossibility and unity denoting certainty. Thus if we throw a die, 
there are 6 possible equally likely outcomes. The probability of throwing a 2 
is 1/6 as there is only one favorable outcome. The probability of throwing an 
odd number is 3/6 (i.e., a half), as there are three favorable likely outcomes. 
The probability of throwing a 7 is zero (i.e., impossible), and the probability of 
throwing a number less than 10 is one (i.e., certain).

When interpreting probability results it is important to recognize that, simply 
because an event has a low probability of occurring, we must not conclude 
that we will never encounter it. After all, something has to occur, and most 
things that occur have only a small probability of occurring, because there are 
always many more things that could occur.

3
C H A P T E R 
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To take a fairly inconsequential example, if we deal a pack of cards to give  
4 hands each of 13 cards, we would be surprised to find that each hand con-
sisted of a complete suit. The probability of this happening is about 1 in 5x1028 
(5 followed by 28 zeros). However, each time we deal the cards, the probabil-
ity of the particular hands we find we have dealt, whatever the distribution of 
the cards, is exactly the same: about one in 5x1028. So, an event with this low 
probability of happening happens every time we deal a pack of cards.

Each day of our lives, we encounter a series of events—a letter from the 
bank, a cut finger, a favorite song on the radio, and so on—each of which has 
a  probability of happening. Taken together and considering only independent 
events, the probability of each day’s sequence of events is extremely unlikely 
to have happened—yet it did!

It would be out of place and unnecessary to give an extensive account of 
 probability theory, but it is important appreciate the basic rules used to 
manipulate probabilities in drawing conclusions. The next two sections are 
concerned with these rules.

Combining Probabilities
Combining several probabilities is a simple process but it needs care to do it 
correctly. If we know the probability of each of two events, we can calculate 
the probability of both events occurring. Suppose we toss a coin and throw a  
die. The probability of getting a head is 1/2 and the probability of getting a  
2 on the die is 1/6. The probability of both events, a head and a 2, is obtained 
by multiplying the two probabilities together. The answer is 1/2 x 1/6 = 1/12 
or one in twelve, as can be seen from the listing of all the possibilities.

Coin H H H H H H T T T T T T

Die 1 2 3 4 5 6 1 2 3 4 5 6

The procedure can be extended to any number of events, the individual  
probabilities being multiplied together. However it is important to note that 
this is a valid process only if the events are independent—that is, their occur-
rences are not linked in some way.

The need for independence can be illustrated by a different example. The 
probability of me being late for work on any particular day is 1/100, say. The 
probability of my colleague being late is 1/80. Multiplication of the probabilities 
gives 1/8,000 as the probability of us both being late on the same day. This is 
clearly wrong. Many of the circumstances that make him late also make me 
late. If the weather is foggy or icy, we are both likely to be late. We may even 
travel on the same train, so a late train makes us both late.
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An example of a serious error caused by the unjustified multiplication of 
probabilities was publicized some years ago. Two children in the same family 
died, apparently suffering crib deaths. The mother, Sally Clark, a British solici-
tor, was charged with murder in 1999. An expert witness for the prosecution 
suggested that the chance of one crib death in a family as affluent as the one 
in question was one in 8,500. By squaring this probability (i.e., by multiplying 
1/8,500 by 1/8,500), he obtained an estimate of 1 in 73 million for the chance 
of two crib deaths occurring in the family. The figure was not challenged 
by the defense, and the mother was found guilty and jailed. She won her 
 second appeal in 2003. Clearly, it is possible that the likelihood of crib deaths 
could run in families for genetic reasons, and the two crib deaths could not 
be assumed to be independent events. The multiplication of the two (equal) 
probabilities was unjustified. As a result of the Sally Clark case, other similar 
cases were reviewed and two other mothers convicted of murder had their 
convictions overturned.

In 2003 in the Netherlands, a nurse, Lucia de Berk, was sentenced to life 
imprisonment for the murder of four patients and the attempted murder of 
three others. Part of the evidence was a statistical calculation provided by a 
law psychologist. It was claimed that the chance of a nurse working at the 
three hospitals being present at so many unexplained deaths and resuscita-
tions was one in 342 million, the result being arrived at by a multiplication of 
probabilities. In the following years, many reputable statisticians criticized the 
simplistic calculation, and a petition to reopen the case was started. Eventually, 
in 2010, after lengthy legal processes, a retrial delivered a not-guilty verdict. 
There were, of course, many considerations other than the statistical calcula-
tion, but it is evident from the proceedings that the calculation carried weight 
in the original conviction.

The rule of multiplication of probabilities for independent events is often 
referred to as the “and” rule, because it expresses the probability of event  
A, and event B, and event C, and so on. A second rule—the “or” rule—is used 
to combine probabilities when we wish to know the probability of event A,  
or event B, or event C, etc. Here, we add the probabilities. As with the previ-
ous rule, this rule also carries an important condition: that the events must be 
mutually exclusive. That means that only one of the events is possible at any 
one time. To illustrate, if we throw a die, the probability of a 2 is 1/6 and the 
probability of a 3 is 1/6. The probability of a 2 or a 3 is 1/6 + 1/6 = 1/3. The 
two events are mutually exclusive in that it is impossible in throwing the die 
to get both a 2 and a 3 at the same time. If we extend the example to clarify 
further, the probability of getting a 1, or a 2, or a 3, or a 4, or a 5, or a 6, is  
1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 1 (i.e., a certainty).

Because the sum of the probabilities of all possible mutually exclusive  
outcomes equals unity (a certainty), it follows that that the probability of some-
thing not happening is equal to one minus the probability of it happening.
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To illustrate the misuse of the “or” rule we can return to our tossing of a coin 
and throwing of a die together. The separate probabilities of a head and a 2 
are respectively 1/2 and 1/6. If we added these together we would conclude 
that the probability of getting a head or a 2 is 1/2 + 1/6 = 2/3, which is quite 
wrong. Getting a head and getting a 2 are not mutually exclusive events since 
both can occur. A proper analysis of this situation shows that:

Probability of heads and a 2      = 1/12

Probability of either, but not both     = 6/12 = 1/2

Probability of neither       = 5/12

Probability of both, or either, or neither = 1/12 + 6/12 + 5/12 =1

The final statement is a correct use of the “or” rule, since “both”, “either”, and 
“neither” constitute a set of mutually exclusive events. These results can be 
checked by viewing the full list of possibilities shown above.

The results are also shown in Figure 3-1 in the form of a tree diagram. The 
difference between the “and” rule and the “or” rule is made clear. Following a 
sequence of events horizontally across the diagram involves a coin event fol-
lowed by a die event. The two “and” probabilities are multiplied together. The 
“or” alternatives are seen in the vertical listing of the final combined probabili-
ties. This tree diagram is a rather trivial example, but you will encounter tree 
diagrams again in examples of more practical situations. It is worth pointing 
out here that although a tree diagram can be replaced by a quicker calculation, 
it is nevertheless an excellent means of clarifying or checking the logic behind 
the calculation.
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Note that when probabilities are multiplied together, the result is smaller 
than either of the two original probabilities. Thus, application of the “and” 
rule always leads to a decrease in probability. This is as we would expect: the 
probability of predicting the winner and the second in a horse race is less than 
the probability of predicting just one of the results. On the other hand, adding 
probabilities together increases the probability. Thus, application of the “or” 
rule increases the probability. Predicting the winner or the second in a horse 
race is more likely than predicting just one of the results.

Combinations of probabilities appear extensively in studies of reliability of 
systems, as you will see later in more detail. When systems consist of many 
components, the overall probability of failure depends on the individual prob-
abilities of failure of the components and the way in which they combine. 
Suppose we have a simple smoke alarm consisting of a sensor connected to a 
siren. Failure of the system occurs if the sensor or the alarm fails, or both fail 
(the “or” rule). If we install a duplicate system, failure occurs only if the first 
system fails and the second system fails (the “and” rule).

Figure 3-1. Tree diagram of the various outcomes of tossing a coin and throwing a die



Chapter 3 | Probability18

Since such analyses are concerned with failures that have to be avoided as 
much as possible, the values of probability that are quoted are often very 
small. We are all more at home with probabilities in the range of tenths or 
perhaps hundredths; but when probabilities of 0.0001 (one in ten thousand) 
or 0.000001 (one in a million) are presented, we have difficulty not only in 
recognizing their significance but also in taking them seriously. A chance of 
a disastrous fire might be one in a million, and some safety procedure we 
introduce might reduce it to one in two million. This would halve the chance 
of a fire—a very significant reduction, but a comparison of the two values, 
0.000001 and 0.000002, does not carry the same impact.

Conditional Probability
Probability calculations can become complicated when the required prob-
ability is conditional on some other event happening. You need not worry 
about these complications, but you do need to appreciate how false conclu-
sions can be drawn in such situations. The conclusions, whether accidental or 
intentional, are particularly dangerous because they appear at first sight to be 
perfectly valid.

To see what is meant by conditional probability, think of two dice being rolled 
one after the other. What is the probability that the total score is 5? There 
are four ways of getting a score of 5—1+4, 2+3, 3+2, and 4+1—out of a pos-
sible 36 combinations of the two scores. So the probability is 4/36 or 1/9.  
If we introduce a condition—for example, that the first die is showing a 2—the 
probability of getting a total of 5 becomes 1/6 because the second die must 
show a 3 and there is a 1 in 6 chance of this happening.

Now consider a situation in which we have a bag of coins, of which 100 are 
forgeries, as illustrated in Figure 3-2.
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Ten of the coins are gold, and two of these are forgeries. We draw one coin 
from the bag and see that it is gold (the condition). The probability that it is 
a forgery is 2 out of 10, or 1/5. Alternatively, when we draw the coin out of 
the bag we may find it to be a forgery (the condition). The probability that 
it is gold is 2 out of 100 (i.e.,1/50). This illustrates the fact that the probabil-
ity of event A, given event B, is generally not the same as the probability of  
event B, given event A. The two conditional probabilities are generally differ-
ent and can be very different.

The so-called prosecutor’s fallacy arises from the use of the wrong conditional 
probability. Suppose a suspect is found to have matching DNA character-
istics of the unknown perpetrator of a crime. Only one person in 10,000 
would be expected to have a similar match. The prosecution argues, there-
fore, that there is only one chance in 10,000 that the suspect is innocent.  
But the 1/10,000 probability is the probability of a DNA match given the 
condition that the suspect is innocent. This is not the appropriate probability 
to use. The relevant probability is the probability that the suspect is innocent 
given the condition that there is a DNA match. We cannot evaluate this 
probability without knowing how many other possible suspects there might 
be who are equally likely to be guilty. (This would be like trying to solve the 
bag of coins example without knowledge of the total number of forgeries.) 
But the figure could be very much greater than 1/10,000. In a population of 

Figure 3-2. Conditional probability illustrated by counterfeit coins



Chapter 3 | Probability20

100,000, say, there would be on average 10 people with the DNA match and, 
assuming that two of these, say, are also suspect, our suspect has a probability 
of 2/3 of being innocent.

As one might expect, there is also the defender’s fallacy. It arises from the 
supposition of a large population of equally suspected people. Following on 
from the previous example, if the population was taken to be 1,000,000 there 
would be 100 with the appropriate DNA match; so, the defender would argue, 
our suspect has a 99/100 probability of being innocent. Raising the supposed 
population to 10 million increases the probability of innocence to 999/1000. 
The fallacy lies in the assumption that everyone in the population is equally 
suspect.

Haigh (2003) and Seife (2010) give useful accounts of how the misuse of prob-
ability can result in errors in legal decisions. Many of the examples are taken 
from actual cases.

It is not only in legal arguments that errors of this sort arise. They are 
 commonly encountered in political debates and in advertising. Have a look at 
the following examples.

“Of those dying of lung cancer each year, 75% are smokers. This shows that 
smokers have a 75% chance of dying of lung cancer.” No it doesn’t! We need 
to know the probability of someone dying of lung cancer, given that he or she 
is a smoker, not the probability of the person having been a smoker, given that 
he or she dies of lung cancer. The following data helps to show the fallacy.

Smokers Nonsmokers Total

Number dying of lung cancer  75  25   100

Number dying of other causes 225 175   400

Total 300 200   500

Of the 300 smokers who died, 75 (i.e., 25%) died of lung cancer. This is very 
different from the quoted 75% of deaths from lung cancer associated with 
smoking. Take note that these are invented figures and must not be used to 
draw any medical conclusions!

“Of dental patients who were found to have had no fillings in ten years, 90% 
had brushed regularly with Toothglo.” But what we would really like to know 
is what percentage of those who brushed regularly with Toothglo had had no 
fillings in ten years.

“Eighty percent of winning horses in yesterday’s races were tipped by our 
racing correspondent.” Maybe, but what percentage of his tips predicted the 
winning horse?
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SWITCHED ON

The atmosphere was becoming tense. Rod Craig, representative of Jenson’s Switches, 
was in the manager’s office at Boilfast, a manufacturer of electric kettles. Boilfast fitted 
most of its kettles with switches supplied by Jenson’s, and it was the switches that were 
being discussed.

The manager of Boilfast, Tom Richards, was concerned about the number of kettles he 
was having to repair under guarantee because of a problem with the on-off switch.

He quoted some figures from a sheet of paper he was holding.

“Over the past two years, of the number of kettles returned because of a faulty on-
off switch, sixty-seven percent were fitted with your switches. And I don’t think that is 
acceptable.”

Rod could hardly do anything but apologize and assure the manager, who was now 
leaning forward in a somewhat threatening manner, that he would refer the matter back 
to his technical department.

On the way back to Jenson’s, Rod had chance to think through the situation. His company 
supplied most of the switches that Boilfast fitted to its kettles, so Boilfast was a customer 
they would not want to lose. But how meaningful was the complaint? Rod began to see 
the light and, by the time he arrived in his office, he had a smile on his face.

He picked up the phone and dialed.

“Tom, the issue is not the one you described.”

“No?”

“You are saying that of the kettles returned because of a faulty switch, 67% were fitted 
with our switches. The real issue is, given that the kettle has our switch fitted, what 
percent are returned because of a faulty switch? Perhaps you should look at your 
figures more closely.”

Tom was thrown off balance and felt slightly confused.

“I’ll get back to you,” he said.

He did look at the figures. Of the number of kettles with Jenson’s switches returned 
for any reason, 22% had a faulty switch. This was similar to the figures relating to 
kettles fitted with switches from other suppliers, the corresponding percentage being 19%.  
Because the majority of Boilfast kettles were fitted with Jenson’s switches, the 
predominance of their switch failures that was troubling Tom was readily explained.



Data
The temptation to form premature theories upon insufficient data is the 
bane of our profession.

—Arthur Conan Doyle

We now look at how data is obtained. This is the critical first stage in making use of data as the 

reliability of the conclusions of any statistical investigation depends on the data being obtained in an 

appropriate and fair manner. The features and format of the data, and how we can classify the data, 

are then discussed.

II
P A R T  



Sampling
Did Nine out of Ten Really Say That?

An essential feature of a sample is that it is representative of the population 
from which it is drawn. Unfortunately, it is impossible to predict that this  
will be so, or even check that it is so when the sample has been obtained.  
A judgment has to be made as to the adequacy of the sampling procedure in 
relation to the individual circumstances. This has given rise to many different 
methods of sampling to cover a wide range of situations.

Problems with Sampling
When the data obtained represents the entire population, the question of 
how relevant the sample is does not arise: the sample is the population. Thus 
the monthly profits of a company over a twelve-month period represent the 
complete picture for the specifically defined twelve-month period. If, however, 
the sample is drawn from a population larger than the sample, the question 
of how representative the sample of the population is becomes critical. If the 
twelve-month sample mentioned above was claimed to be representative of 
other twelve-month periods—in other words, if it were considered to be a 
sample from a population of numerous twelve-month periods—the evidence 
for its wider relevance would need to be examined.

For those carrying out statistical investigations, the adoption of appropriate 
sampling methods is a priority. The credibility of everything that follows in an 
investigation hinges on whether the samples are representative of the popula-
tions to which the conclusions of the investigation will be applied. If we are 
not carrying out the investigations but simply looking at results of investi-
gations that others are responsible for, we have a considerable advantage.  

4
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We have the benefit of hindsight and can assess what populations the samples 
best represent, and whether these are the appropriate populations or close 
enough to what we require for our purposes.

Even with proper sampling, arrangement problems can arise. Some of the data 
may be incorrect. A meter may be misread, or the meter may be faulty. Tallies 
can be miscounted. A respondent may accidentally or intentionally give a false 
answer. The question may be worded in a way that invites a particular answer. 
Charles Seife (2010: 117) gives an amusing example of how the wording of 
a question is likely to determine the reply. “Do you think it is acceptable to 
smoke while praying?” is likely to get the answer “No”; whereas “Do you think 
it is acceptable to pray while smoking?” is likely to get the answer “Yes.”

Worse still is the slanted reporting of the results of a survey when the 
questions may have already biased the answers received. In 2011, the media 
reported that a children’s charity had commissioned a survey which included 
the question, “Are children becoming more feral?” The conclusion from the 
commissioning charity was that almost 50% of the public felt that children were 
behaving like animals. A further question asked at what age it was too late to 
reform children. Although 44% said never too late, and 28% said between 11 
and 16 years, it was reported that a quarter of all adults think children are 
beyond help at the age of 10.

Blastland and Dilnot (2007) give an account of questionable information aris-
ing from surveys. It is worthwhile reading for anyone examining the results of 
an investigation based on sampling. Examples range from the number of immi-
grants entering the UK every day to the decline in the hedgehog population. 
The latter is particularly intriguing. The Mammals on the Road Survey, as it is 
called, is carried out from June to August each year. The numbers of squashed 
hedgehogs on selected roads are counted. The numbers are decreasing each 
year, from which it is deduced that the hedgehog population is declining. 
However, there are many reasons why the sample of dead hedgehogs may not 
represent the total population of hedgehogs. Traffic density on the selected 
roads may be changing. Hedgehogs may be evolving and becoming more wary 
of traffic. Climate change may be altering the time of year when hedgehogs are 
likely to be on the roads, and so on. Of course, one has to recognize that it is 
not easy to devise a better method without involving greater expense.

It must be remembered that sampling costs money. There always has to be a 
compromise between having large samples to maximize the reliability of the 
results and small samples to minimize costs. As mentioned previously, the  
reliability of the results depends directly on the size of the sample and does 
not depend on the size of the population from which the sample is drawn. It 
does not follow therefore that samples have to be large because the target 
populations are large, though it may be more difficult to ensure that a small 
sample is representative of a population when the population is large.
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Some of the data required from a survey may be missing, and the reason why 
they are missing may relate to how representative the sample is. For example, 
older respondents may refuse to state their age, and simply deleting their  
contribution to the sample will bias the sample in favor of younger respon-
dents. Samples should include a record of any data that has been deleted. David 
Hand (2008) provides a useful discussion of missing data and other potential 
problems in sampled data, and he describes ways of dealing with them.

Repeated Measurements
In scientific investigations, certain properties that have fixed values have to be 
ascertained. For example, the density of pure copper or the rate of decay of a 
radioactive material may have to be determined as accurately as possible. The 
laboratory faced with such tasks will repeat the measurements several times, 
and each time a slightly different value may be obtained.

The set of values constitutes a sample and, since there are in principle an 
infinite number of such possible values, it is a sample drawn from an infinite 
population. The sample and the method by which the data is obtained define 
the population.

Compare this situation with an apparently similar one that is in reality some-
what different. Suppose our scientists are interested in determining accurately 
the circumference of the Earth around the Equator. Such measurements have 
been made over many centuries by different investigators. If we were to bring 
together all the values obtained in the past, we could not say that we had a 
sample from the same population. Each of the values would have its a ssociated 
method of measurement and its level of precision and would be representa-
tive of an infinite population of such values, all obtained in the same way.  
But each of the populations would be different. Nevertheless, because all the 
values are targeted at the same property, such as the circumference of the 
Earth, it ought to be possible to make use of the collection of data, and indeed 
it is by weighting the values, as you shall see in Chapter 7.

Simple Random Sampling
For simple random sampling, each datum from the population must have an 
equal chance of being selected, and the selection of each must be indepen-
dent of the selection of any other. This is more difficult to achieve than might 
appear at first sight.

The first difficulty arises because people are not good at adopting a random 
procedure. If faced with a tray of apples and asked to select ten at random, 
people generally make selections that are likely to be biased. Some may select 
“average-looking” apples, ignoring the very small or very large. Others may 
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attempt to get a full range of sizes from the smallest to the largest. Some will 
be more concerned with the range of color, others with shape.

A similar difficulty can arise because of the nonrandom times of sampling. An 
inspector visits a production line in a factory, at supposedly random times, to 
select an item for quality-control inspection. But production starts at 8:00 a.m., 
and he is not available until 9:30 a.m. Also, he takes a coffee break between 
11:00 and 11:15.

Rather than using the judgments of individuals to establish the randomness 
of the sampling, it is preferable to make use of random numbers. These are 
generated by computer and are listed in statistics books. (Strictly speaking, 
computer-generated numbers are “pseudo-random,” but this is not a problem.) 
A sequence of random numbers can be used to determine which apples to 
select or which products to take from the production line.

When surveys are required and people have to be questioned, the difficul-
ties are greater. The population may be widely spread geographically. If the 
study relates to adult twins, for example, and the results are intended to be 
applicable to all such twins in the United Kingdom, say, then the population is 
spread throughout the United Kingdom and the sample has to be randomly 
selected from this widespread population. Even if available finances allowed 
the sampling of adult twins to extend so widely, there is still the problem of 
ensuring randomness. If the twins were located by telephone, those without 
a phone, on holiday, or away from home for some other reason, for example, 
would be excluded. And, of course, there are always those people who refuse 
to take part in surveys and those who never tell the truth in surveys.

Questioning people in the street is easier to do in fine weather. But those who 
are out in the pouring rain or freezing temperatures, who are unlikely to be 
questioned and unlikely anyway to be prepared to stop and answer, may have 
quite different views from fine-weather strollers.

It is because of such difficulties that other sampling methods have been 
devised. Not all the problems can be overcome: if someone is determined to 
be untruthful, no sampling method is going to rectify the situation.

Systematic Sampling
For systematic sampling a number is chosen—say, 10. The sample is then 
selected by taking every tenth member from the list or from the arrangement 
of items. The first member is chosen at random. If necessary, the end of the 
list is assumed to be joined to the beginning to allow the counting to continue 
in a circular fashion until the required sample size is reached.
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It is important to consider whether the choice of the arbitrary number  creates 
any bias because of patterns in the listing. If the list is of people arranged 
in family groups, for example, then a number as large as 10 would make it 
unlikely that two members of the same family would be chosen. If the list 
was arranged in pairs—man–wife, say—then any even number would bias the 
results in favor of the wives.

Stratified Random Sampling
If the population under study consists of non-overlapping groups, and the sizes 
of the groups relative to the size of the population are known, then stratified 
random sampling can be used. The groups or subpopulations are referred to 
as strata.

Suppose a survey needs to be carried out to get the views of a town’s adult 
population on the plans for a new shopping mall. People of different ages could 
well be expected to have different views, so age could be used to define the 
strata. A stratum would be a particular age range: for example, 20–29 years. 
Suppose this age group makes up 25% of the town’s adult population. The 
sample is then defined as requiring 25% to be within this age range. The other 
age ranges are used similarly to fix the composition of the sample. This is 
referred to as proportional allocation.

It could be decided that in addition to age affecting the views of the respon-
dents, the geographical location of their homes might have an effect. A second 
level of stratification might be introduced, dividing the town into a number 
of districts. If proportional allocation is again applied, it may put  unbearable 
demands on the size of the sample. It may be found that some of the 
 subgroups—for example, the over-60-year-olds in one of the town districts—
are represented in the sample by only a handful of individuals. Disproportional  
allocation could be applied, increasing the number in the sample for these 
groups but not for the others.

Stratified random sampling is a popular procedure used in surveys, but it is 
not easy to set up in the most efficient way. It may turn out that the choice of 
strata was not the most appropriate. In the example above, it might have been 
better to define annual household income as the strata. Not until the sample 
results have been processed will some of the shortcomings come to light. In 
order to achieve a better sampling design, a pilot survey is often undertaken, 
or results of previous similar surveys are examined.

There is a mathematical procedure for calculating the optimum allocation for 
a single level of stratification, called the Neyman allocation, but this requires 
prior knowledge of the variability of the various groups within the strata. 
Again, a pilot study would be required to provide the information.
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Cluster Sampling
Cluster sampling is used when the population under study is widespread in 
space or time. For example, it might be necessary to survey fire engine driv-
ers over the whole country, or hospital admissions 24 hours a day, 7 days a 
week.

To limit sampling costs, the geographical or time extents are divided into 
compact zones or clusters. For the fire engine drivers, the country could be 
divided into geographical zones, such as counties. A random sample of the 
clusters, the primary sampling units, is selected. In multistage cluster sampling, 
further clustering takes place. The fire stations within the selected counties 
would be identified. Random sampling would then be applied to select the fire 
stations for study in each selected county. Clearly, the validity of the results 
hinges critically on how well the random selection of the clusters represents 
the population.

Quota Sampling
Interviewers employed in surveys are frequently given quotas to fulfill. They 
may be required to interview three middle-aged professionals, six young 
housewives, two retired pensioners, and so on. This is quota sampling. The 
quotas are determined from the known constitution of the population, as in 
stratified sampling.

The advantages of quota sampling are that the required procedure is easily taught, 
and the correct quotas are obtained even for very small samples which can then 
be pooled. However, no element of randomization is involved and bias can easily 
arise as the interviewer can choose who to approach and who to avoid.

Sequential Sampling
In sequential sampling, the size of the sample is not defined at the outset. 
Instead, random sampling is continued until a required criterion is met. This 
is particularly useful when the cost of obtaining each response is high. After 
each response the data is analyzed and a decision made whether to obtain a 
further response.

Databases
The rapid growth of the use of computer systems in business and industry 
has produced vast databases containing data of all kinds. Banking, insurance, 
health, and retailing organizations, for example, have data relating to pat-
terns of behavior linking customers, purchasing habits, preferences, products,  
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and so on. Much of the data has been collected because it is easy to do so 
when the operations of the organizations are computerized. Thus databases 
are a source of large samples that can be used for further analysis. I shall  discuss 
databases further when I describe data mining and big data in Part VII.

Resampling Methods
If we have a sample from a population, we can consider the question of what 
other samples we could have obtained might have looked like. Clearly, they 
could have consisted of a selection of the values we see in our existing sample 
and they could well have duplicated some of the values. This is the thinking 
behind resampling. We can produce further samples by randomly selecting 
values from our existing sample.

Suppose we have a sample consisting of the following values:

1  2  3  4  5  6 .

If we now select groups of six randomly from these values, we might get

1  3  3  4  5  6 ,

1  3  4  5  5  5 ,

etc.

Numerous additional samples can be generated in this way, and from the 
samples it is possible to gain information about the population from which the 
original sample was drawn.

Particular techniques of this type include the jackknife, where one or more 
values are removed from the original sample each time, and the bootstrap, 
where a random selection of the values provides each new sample. They are 
computer-intensive, requiring large numbers of randomly generated samples.

Data Sequences
If the sample is random, it is not expected that the data viewed in the order 
they were obtained would show any patterns. Data that is collected over a 
period of time could show a trend, increasing or decreasing with time, and this 
would raise suspicions. Similarly, a sample of members of the public answer-
ing yes or no to a question should show a random distribution of the two 
answers. It would be suspicious if most of the yes answers were early in the 
listing and most of the no answers were later. Equally, of course, it would be 
suspicious if the two answers alternated in perfect sequence.
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A statistical test called the one-sample runs test can be used to check the  
randomness of a sequence of yes and no answers. The following sequence

YYY N Y NN Y N YYY NN Y NN YYY

has 20 data, 12 of which are Y and 8 of which are N. There are 11 runs, such 
as YYY, followed by N, followed by Y, … etc. The number of runs can be 
referred to published tables to establish whether the sequence is unlikely to be  
random. Note that it cannot be confirmed that the sequence is random.

Numerical data can be coded in order to carry out the one-sample runs test. 
The following sequence

5 3 8 4 6 7 4 3 5 8 9 5 4 2 5 6 4 8 6 7

has 20 data, with an average (mean) value of 5.5. The sequence can be rewrit-
ten with H representing higher than the mean and L representing lower than 
the mean. This gives the sequence

LL H L HH LLL HH LLLL H L HHH

which has 10 runs.

The test is of limited use, not only because it cannot confirm that a sequence 
is random but because runs arise more commonly than our intuition would 
suggest (Havil, 2008: 88-102). In a sequence of 100 tosses of a coin, the chance 
of a run of 5 or more is 0.97; and in a sequence of 200 tosses, there is a better 
than even chance of observing a run of 8.



The Raw Data
Hard to Digest Until Processed

Raw data is the expression used to describe the original data before any  analysis 
is undertaken. It is not a very palatable phrase. Something like  “original data” 
or “new data” would have been more inviting, but I have to stick to conven-
tion. The purpose of this chapter is to explain the different kinds of data and 
present a number of definitions to be used in the chapters that follow. In addi-
tion, I will demonstrate how figures can mislead or confuse even before the 
statistical analysis has started.

Descriptive or Numerical
Data may be descriptive or numerical. Descriptive data, which is also called 
categorical, can be placed in categories and counted. Recording the way people 
vote in an election, for example, requires the categories—namely, the political 
parties—to be defined, and each datum adds one more to the appropriate 
category. The process of counting produces numerical values which summa-
rize the data and can be used in subsequent processing. Thus we can express 
voting results as proportions of voters for each of the political parties.

If descriptive data can be placed in order but without any way of comparing 
the sizes of the gaps between the categories, the data is said to be ordinal. 
Thus we can place small, medium, and large in order, but the difference between 
small and medium may not be the same as the difference between medium and 
large. The placing in order in this way is referred to as ranking. Not only can 
the numbers in each category be totaled to give numerical values, but it also 
may be possible to attribute ordered numbers to each category. Thus small, 
medium, and large could be expressed respectively as 1, 2, and 3 on a scale 
indicating increasing size, to allow further processing.

5
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Descriptive data that cannot be placed in order is called nominal. Examples 
include color of eyes and place of birth. Collections of such data consist of 
numbers of occurrences of the particular attribute. If just two categories are 
being considered and they are mutually exclusive (for example, yes/no data), 
the data is referred to as binomial.

Numerical data may be continuous or discrete. Continuous data can be quoted 
to any degree of accuracy on an unbroken scale. Thus 24.31 km, 427.4 km, and 
5017 km are examples of distances expressed as continuous numerical data. 
Discrete data can have only particular values on a scale that has gaps. Thus 
the number of children in a family can have values of 0, 1, 2, 3, 4, …, with no 
in-between values. Notice that there is still a meaningful order of the values, 
as with continuous data.

Strictly speaking, continuous data becomes discrete once it is rounded, because 
it is quoted to a finite number of digits. Thus 24.31 is a discrete value located 
between 24.30 and 24.32. However, this is a somewhat pedantic observation 
and unlikely to cause problems. Of more importance is recognition of the fact 
that discrete data can often be processed as if the data were continuous, as 
you will see in Chapter 11.

Within a set of data there are usually several recorded features: numerical, 
descriptive, or both. Each feature—for example, cost or color—is referred 
to as a variable. The term random variable is often used to stress the fact that 
the values that the variables have are a random selection from the potentially 
available values.

A distribution is the set of values of the variable represented in a sample or a 
population, together with the frequency or relative frequency with which each 
value occurs. Thus, a listing of shoe sizes for a group of 50 men might show 
the following:

Shoe size:  8, 9, 8, 7, 9, 9, 8, 6, 10, 9, 10, 7, 9, 6, 11, 9, 8, 8, 7,9, 9, 6,10, 9, 8, 9, 10, 8, 
7, 9, 6, 7, 8, 10, 7,10, 9, 9, 10, 8, 7, 8, 9, 7, 10, 9, 8, 7, 8, 9

 
The values, 50 in total, can be counted and grouped as follows:

Shoe Size Number of Men (Frequency)

 6  4
 7  9
 8 12
 9 16
10  8
11  1
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The distribution can be shown diagrammatically in the form of a bar chart, 
as in Figure 5-1. The values can be seen to cluster around the central values. 
Starting in Chapter 7, I will discuss such distributions in more detail. In 
particular, you will meet the so-called normal distribution, which is of this form 
and which plays a major part in statistical analysis.

Figure 5-1. Bar chart showing the distribution of shoe sizes in a sample of 50 men

Some distributions are quite irregular in appearance when shown as bar 
charts. Others, including the normal distribution, not only are regular but also 
can be described exactly by mathematical formulae. Some of these will be 
encountered in Chapters 7, 11, and 18.

Format of Numbers
We are all familiar with the numbers we meet in our daily lives. Generally, these 
are neither too small nor too large for us to easily visualize them. However, 
very large or very small numbers can be a source of confusion.

Because large numbers written in full are very long, scientific reports adopt a 
shorthand method called standard index form. Multiplication factors of 10 are 
indicated by a superscript. So a million is 106, meaning 10 × 10 × 10 × 10 ×  
10 × 10. The number 2,365,000 can be written as 2.365x106. It is useful to note 
that the superscript, 6 in this case, indicates the number of moves of the decimal 
point to the right that are required to restore the number to the usual format.

Owing in part to computer literacy, the prefixes that are used in scientific 
work are creeping into common usage even in metrically challenged countries 
such as the United States. These prefixes are the set of decadic (decimal-
based) multiples applied to the so-called SI units (abbreviated from Le Systéme 
internationale d’unités). Thus kilo, or simply k, is taken to mean 1000—so we 
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see $3k, meaning $3000. Mega means a million and has the abbreviation M in 
scientific work; but in financial documents we see the abbreviation MM, such 
that $8MM is taken to mean $8,000,000. To add to the confusion, MM is the 
Roman numeral for 2000. Further up the scale we have giga (G) for 1000 mil-
lions (109), but in financial writing we see $1B, $1BN, or $1bn. Giga became 
increasingly popularized after consumer hard disk storage capacity crossed 
into the gigabyte (GB) range in the 1990s. The next prefixes up, tera (T) for 
a million millions (1012) and peta (P), which is a thousand times larger again 
(1015), are used in relation to big data, which I will discuss in Part VII.

The superscripts in 106 and so on are referred to as orders of magnitude. Each 
added factor of ten indicates the next order of magnitude. To say that two 
numbers are of the same order of magnitude means they are within a factor 
of ten of each other.

Very small numbers are encountered less frequently than very large ones. We 
seem to have no special traditional names for the small numbers except the 
awkward fraction words like hundredth, thousandth, etc. The standard index 
form described above extends to the very small, the superscripts being nega-
tive and indicating division by a number of tens rather than multiplication. 
Thus, 10–3 means 1 divided by 1000—that is, 10–3 means “one thousandth.” 
The number 0.00000378 may be written as 3.78x10–6, meaning 3.78 divided by 
10 six times. As with the large numbers, the superscript, –6 in this case, indi-
cates the number of moves of the decimal point that are required to restore 
the number to the usual format—except that the moves are now to the left, 
as indicated by the negative sign.

As with the large numbers, prefixes indicate how many tens the number shown 
has to be divided by. Some of these are in common use. One hundredth (0.01 
or 10–2) is indicated by centi (c). One thousandth (0.001 or 10–3) is indicated 
by milli (m), and one millionth (0.000001 or 10–6) by micro (the Greek letter 
µ, pronounced “mu”). The prefix nano (n) is encountered in the fashionable 
word nanotechnology, which is the relatively new branch of science dealing 
with molecular sizes. Nano indicates one thousand-millionth (0.000000001 
or 10–9), one nanometer (1 nm) being about the size of a molecule. Other SI 
prefixes used in the scientific community but not yet broadly encountered are 
pico (p) for one million-millionth (10–12), femto (f) for one thousand-million-
millionth (10–15), and atto (a) for one million-million-millionth (10–18).

Figure 5-2 brings together the various prefixes mentioned, together with a 
few even more exotic ones.
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Negative numbers are well understood, but beware of possible confusion when 
comparing two negative numbers. If sales decrease by 200 units in January and 
by 300 in February, the change is said to be greater in February than in January. 
However, –300 is mathematically less than –200.

Multiplying or dividing two negative numbers gives a positive number. For 
example, if I buy and sell some shares at the same price, and the share price 
then changes, my profit is the excess number bought multiplied by the increase. 
Written as a formula, it is

Profit=(B–S)´P

Figure 5-2. Prefixes used to denote decadic multiples or fractions of units
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where B is the number bought, S is the number sold, and P is the increase in 
price. Four situations might be as follows:

Number Bought Number Sold Increase in Price Profit

B S B–S P
100  90  10  $1  $10
100  90  10 –$1 –$10
100 110 –10  $1 –$10
100 110 –10 –$1  $10

The profit is negative if either the number sold is greater than the number 
bought or the price decreases. However, if both of these occur, as shown in 
the bottom line, the profit is positive.

In financial reports, negative values are avoided whenever possible. I have 
often wondered why this is so. It seems so odd in bookkeeping that, when 
balancing books, two columns (debit and credit) have to be added sepa-
rately and then compared and the smaller subtracted from the larger. The 
result, always  positive, is then added to the column with the smaller total to 
effect a  balance, thus completely avoiding any recording of a negative value. 
Bookkeeping has a long history, and today’s rules and procedures date back to 
medieval times. Perhaps the negative sign in mathematics was then less com-
monly used. Alternatively, it may be because when adding a list of figures that 
includes negatives, the negative sign, being at the left side, may not be noticed 
until it is too late. When a final value, which happens to be negative, has to be 
quoted, it is placed in brackets. This too is odd, as brackets have a particular 
and different meaning in mathematics. At one time, such negative values were 
generally shown in red, and sometimes still are—hence the expression “in the 
red,” meaning overdrawn at the bank.

Rounding
Rounding is usually to the nearest value of the retained last digit. Thus, 4372 
would be rounded to 4370 to the nearest ten 4400 to the nearest hundred 
or 4000 to the nearest thousand. When the digit to be removed is 5, it is 
common practice to round up, so 65 would become 70 to the nearest ten.  
It should be noted, however, that this can lead to a bias. In a list of numbers, 
each having a random final digit to be removed by rounding, more will be 
rounded up than down. If the numbers are subsequently added together, the 
total will be greater than the total of the original values. Inconsistencies can 
arise. If we calculate 10% of $5.25, we get $0.53 rounded up to the near-
est penny. But 90%, calculated in the same way, gives $4.73, making the total 
slightly greater than the original amount. There are alternative methods of 
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dealing with  numbers ending with the digit 5 if the particular circumstances 
make it necessary. For example, in a long list of numbers, those ending in 5 can 
be rounded up and down alternately.

Raw statistical data that express continuously variable attributes will have 
been rounded, perhaps because the method of obtaining the values is limited 
in precision. Weighing precision, for example, is limited by the accuracy of 
the scales used. Or rounding may have been employed because the minor 
variations in the values are not considered to have any significance, either in 
the statistical processing that follows or in the conclusions that are expected 
following the processing.

Although rounding to the nearest retained last digit is usual, there are situa-
tions where always rounding up or always rounding down is adopted. The tax 
authorities in the UK and Singapore, for example, give the benefit to taxpayers 
of rounding down income and allowances and rounding up deductions.

Note that some values that appear to be discrete have in fact been rounded. 
A person’s age could be expressed to the nearest day, hour, minute or even 
closer, but in a statistical list it may be given as an integral year. Furthermore, 
the rounding is not usually to the nearest year, but to the age last birthday. 
This makes no difference in many instances, of course, but if we were, for 
example, considering children between the ages of 8 and 14, we could find 
that our sample included children from just 8 years old to 15 years old less 
one day.

Rounding always creates discrete values, of course, but the small intervals 
relative to the size of the values render the values continuous in effect.

As a general principle, rounding should be carried out at the end of a  calculation 
and not part way through, if errors are to be avoided. Successive roundings 
can give rise to cumulative errors. If we start, for example, with the number 
67 and subject it to a number of arithmetic operations, we must wait until 
the final operation before rounding the answer to the required digit. Suppose 
we divide it by 5 and then multiply the answer by 7. We get 93.8, which we 
round to the nearest whole number, 94. If, alternatively, we round to the near-
est whole number after the first operation, the sequence runs as follows:  
67 divided by 5 is 13.4, which we round to 13; multiplying by 7 gives 91, which 
is incorrect.

Difficulties can arise if figures that have already been rounded are taken from 
sources and processed further. If, to take an extreme example, we read that  
20 million cars are registered as being in use on the roads, but we see else-
where that records show only 18 million currently licensed, we might view 
the difference and deduce that 2 million, or 10%, are unlicensed. In reality, the  
figure could be almost as low as half this if the original data—19.51 million reg-
istered and 18.49 million licensed—had been rounded to the nearest  million. 
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When figures that appear to be rounded are required for further analysis, the 
maximum and minimum possible values that they may represent should be 
examined. Unless the worst case combination of the values is inconsequential, 
it is wise to seek the original data.

I wonder about rounding whenever I hear a time check on the radio. When 
the announcer says, “It is now sixteen minutes past two”—does he mean 
“exactly 16 minutes past 2:00”? Or does he mean “correct to the nearest 
minute”—in which case it could be anything between 15.5 minutes past to 
16.5 past? Or he may mean that his digital clock is showing 16 minutes past 
and the actual time is somewhere between 16 and 17 minutes past. Not that 
it usually matters, of course.

Percentages
Any number can be represented by a fraction, a decimal, or a percentage. 
Thus ½ = 0.5 = 50%. To obtain a decimal from a fraction, divide the top by the 
bottom. To turn either into a percentage, multiply by 100. Expressing numbers 
as percentages in this way is useful when the numbers are less than 1. For 
numbers greater than 1, there is no advantage but it is done for effect. The 
number 2 is 200%. Notice the difference between sales increasing by 200% 
compared with last year and sales increasing to 200% compared with last year. 
In the first situation, sales have trebled; in the second, they have doubled.

Increases or decreases in sales, income, tax, and so on can be quoted as  
percentages or as actual values. The impression given can change enormously 
depending on which is chosen. A small increase of a small value can be a large 
percentage. A family with one child has a 100% increase in the number of  
children when the second child is born. A family with 5 children has only a 
20% increase when the next one is born. Similarly, a large increase of a large 
value can be a small percentage. An annual salary increase of $1,000 for some-
body earning half a million dollars is only 0.2%, whereas for a full-time worker 
making the federal minimum wage, it is 7%.

If you read that manufacturing has reduced from 25% of economic output to 
12% in the last 20 years, you may well conclude that the amount of manufactur-
ing has reduced. This is not necessarily so. It could actually have increased in 
absolute terms, its percentage reduction being due to a large increase in another 
sector of the economy. When data are presented as percentage changes, it is 
worth examining how the data would look in the form of actual changes.

Ages are usually quoted to the nearest year, but children appreciate that one 
year is a large proportion of their ages. You hear, “I am nine and a half, but 
next week I shall be nine and three quarters.” Quoting the age of a ten-year-
old to the nearest quarter of a year seems pedantic, yet it is less precise, as a 
percentage, than reporting the ages of pensioners to the nearest year.
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Richard Wiseman (2007: 128) gives an interesting example of how people 
perceive values differently when seen as percentages. In the first scenario, a 
shopper is buying a calculator costing $20. Immediately before the purchase 
takes place, the shop assistant says that tomorrow there is a sale and the  
calculator will cost only $5. The shopper has to decide whether to  proceed 
with the purchase or return to the shop tomorrow. In the second scenario, 
the shopper is buying a computer costing $999. This time, the assistant 
explains that tomorrow the cost will be only $984. On putting these scenar-
ios to people, researchers have found that about 70% say they would put off 
 buying the calculator until tomorrow but would go ahead with the purchase 
of the computer immediately. Yet the saving from delaying is the same in each  
situation—namely, $15.

This choice between percentage changes and actual changes impinges not only 
on the presentation of data, but on many issues that affect daily life. Should 
a tax reduction be a percentage or a fixed value for all? Should a pay rise 
be a percentage across the board or the same amount for everyone? These 
questions create lots of debate but little agreement. In reality, a compromise 
somewhere between the two usually results.

Note that a percentage is always calculated on the basis of the original value. 
So if my income increases by 10% this year but decreases by 10% next year, 
I end up with a lower income, because the second calculation is based on 
a higher income, and the 10% reduction represents more than the earlier 
increase of 10% did. In a similar way if I purchase stock that has been reduced 
by 20% and pay $1000, my saving is not $200 but rather more, because the 
reduction was calculated as a percentage of the original price.

A company having reduced the usage of paper, with the evidence that 12 
boxes which were previously used in 4 days now last 6 days, may claim a 50% 
reduction. At a glance, it may look like 50%, because 6 days is 50% more than 
4 days. However, the original usage was 3 boxes per day, and it is now 2 boxes 
per day—i.e., a reduction of 1 in 3, or 33%.

Sometimes there is ambiguity regarding which is the original value, and this 
can allow some bias in quoting the result. Suppose my car does 25 miles per 
gallon of fuel and yours does 30 miles per gallon. You would be correct in  
saying that your fuel consumption is 20% ((30 – 25) × 100/25) better than 
mine, the wording implying that it is your consumption that is being calculated, 
using my consumption as the base value. However, I would be equally correct 
in saying that my fuel consumption is only 16.7% ((30 – 25) × 100/30) worse 
than yours, calculating my consumption with yours as the base value.

Also deceptive is the way percentage rates of increase or decrease change 
as the time period considered increases. If the monthly interest rate on my 
credit card balance is 2%, I need to know what this is equivalent to when 
expressed as an annual rate. A debt of P will have risen to P × (1 + 2/100) at 
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the end of the first month. At the end of the second month, this sum has to 
be multiplied by (1 + 2/100) to get the new total. By the end of the year, the 
original balance will have been multiplied by this factor 12 times. The final 
figure is 1.268 × P: an increase of nearly 27% compared with the quick-glance 
impression of 24%. Many will recognize this as a compound interest calcula-
tion and will be familiar with a formula that allows a quicker way of arriving at 
the result. Those not familiar with the calculation will nevertheless recognize 
with some pleasure that their bank accounts show this feature in producing 
increasing interest each year, even without additional deposits being made.

Confusion can arise when a percentage of a percentage is calculated. If the 
standard rate of tax is 20%, say, and the chancellor decides to increase it by 
5%, the new rate will not be 25% but 21%. If he wished to be really unpopular 
and increase the rate to 25%, he could say that the rate would be increased by 
5 percentage points, rather than by 5 percent.

Simple Index Numbers
Index numbers are used to render a trend in a sequence of values more easily 
appreciated. Thus we might have, say, the number of washing machines sold by 
a shop each year, as follows:

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

Sales 224 246 249 258 260 269
Index 100 110 111 115 116 120

Year 1 has been adopted as the base, so the index is shown as 100. The 
 succeeding indices are obtained by expressing each sales value as a percentage 
of the base value. Thus, for Year 2, (246/224) × 100 = 110.

The impression given to the reader depends very greatly on what has been 
chosen as the base value. If we look again at the above values but now take 
Year 2 as the base value, we get the following sequence:

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

Sales 224 246 249 258 260 269

Index 100 101 105 106 109

The increasing sales now look less impressive.

A fair picture will emerge, provided the chosen base is typical in the  appropriate 
sense. We would really need to know whether the sales for Year 1 were 
unusually low or whether they represented an increase on previous years.
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A chain index can be calculated using each previous value as the base instead 
of the initial value. Thus for the above sales figures, we would have the 
following:

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

Sales 224 246 249 258 260 269
Index 110 101 104 101 103

In such sequences, favorable indices tend to be followed by unfavorable ones, 
and vice versa. The sequence has the advantage of better illustrating a rate 
of change. A steady rise in sales or a steady fall in sales would be shown by 
a sequence of similar values. A sequence of rising values would indicate an 
increasing rate of increase in sales, whereas a sequence of falling values would 
indicate an increasing rate of decreasing sales.



Samples
The tendency of the casual mind is to pick out or stumble upon a 
sample which supports or defies its prejudices, and then to make it the 
representative of a whole class.

—Walter Lippmann

The raw data may provide all the information that is required and therefore undergo no subsequent 

processing. In most situations, however, this will not be so. The data may be too extensive to be 

readily appreciated and may require summarizing. It is essential that the summarizing be done in a 

suitable manner so that it represents the original data in a fair way. Processing may then be required 

to estimate the characteristics of the population from which the data were drawn.

III
P A R T  



Descriptive Data
Not Every Picture Is Worth a Thousand Words

There is not much that can be done to characterize a sample of descriptive 
data in comparison with the options available for numerical data. The latter 
has had the advantages of centuries of development of mathematics. Where 
possible, and usually by simply counting, descriptive data is rendered numeri-
cal. In addition, the frequent use of diagrams provides neat summaries of the 
data, though there are many ways in which diagrams can mislead.

Diagrammatic Representation
Nominal data consists of numbers that can be placed in categories and totaled, 
the categories having no numerical relationship to each other. Thus an 
employer might group the staff according to the mode of transport used to 
get to work, and use the total in each group to draw conclusions about the 
required size of the car park or bicycle shed.

In Figure 6-1(a), the populations of each of four towns are shown in the form 
of a bar chart. Because there is no numerical relation between the categories 
(towns), the bars could have been lined up in any order.

The bar chart format is useful in allowing the relative numbers in each  
category to be visualized: the eye is quite sensitive in spotting small differences 
between the heights of the bars while at the same time assimilating large  
differences. Bar charts are sometimes presented in a way that exaggerates the 
differences between the large and the small bars, as shown in Figure 6-1(b). 
The origin has been suppressed, giving the impression that the population of 
Northton is very much greater than that of the others. Suppression of the 
origin in this fashion is generally not acceptable and should arouse  suspicion 

6
C H A P T E R 
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regarding the intentions behind the presentation of the statistics. A bar 
chart of this sort was used in advertising Quaker Oats, suggesting that eating  
the breakfast cereal reduced the level of cholesterol (Seife, 2010: 35-36). The 
diagram was withdrawn after complaints were received.

In situations where it is considered necessary to exaggerate—for instance, 
we might wish to ensure that it is clear that Easton has a larger population 
than Weston—the vertical axis, and possibly the bars, should show breaks as 
in Figure 6-1(c).

Figure 6-1. Three representations of the same bar chart, showing the visual effects of 
suppressing the origin and breaking the vertical axis
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When it is important to draw attention to the relative proportions of 
each of the categories, a pie chart is preferable to a bar chart. Figure 6-2(a) 
shows the results of an election. The impression given visually is the relative  
support for each political party rather than the actual number of votes received. 
However, it is not easy to see whether the Yellow Party or the Blue Party won 
the election without looking at the numbers. A bar chart, Figure 6-2(b), shows 
more clearly who won the election, but the impression of proportion of votes 
is lost.

Figure 6-2. A pie chart and a bar chart representing the same data

Diagrams that consist of two or more pie charts can be visually misleading. 
In Figure 6-3(a), the number of households in two districts are shown and 
divided into three categories: those that have dogs, those that have cats, and 
those that have neither. The area of each sector of the pie chart represents 
the number in each category, and the total area of each pie chart represents 
the total number of households in each district. Upper Dale, with 3000 house-
holds, has a chart with 50% greater area than that for Lower Dale, which 
has 2000 households. To achieve the correct area proportion, the chart for 
Upper Dale has a diameter only 22% greater than the Lower Dale chart. This 
gives a visual bias to the distribution of pets in Lower Dale. The stacked bar 
chart in Figure 6-3(b) gives a fairer visual impression of the relative numbers 
of dogs and cats.
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Pictograms can be even more misleading. Figure 6-4(a) shows a comparison of 
the number of cats in Upper Dale and Lower Dale. The vertical scale indicates 
the number of cats, so only the vertical height of the image of the cat is sig-
nificant. However, because the taller cat is also wider, the difference between 
the numbers of cats appears visually to be greater than it really is. The style 
of pictogram shown in Figure 6-4(b) is preferable in showing no bias. Here a 
small image of the cat is used to represent 100 cats in each of the districts.

Figure 6-3. A pair of pie charts and a stacked bar chart representing the same data
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The use of three-dimensional images in pictograms can be extremely mislead-
ing. Figure 6-5 shows the output of two factories. Visually, it appears that there 
is not a great difference between the two. However, as the actual cubic meters 
for each confirm, Factory A has an output almost twice that of Factory B. The 
illusion occurs because although the volumes of the two cubes represent the 
outputs correctly, the length of the side of the cube for Factory A is only 25% 
greater than that for Factory B. Thus: 50 × 50 × 50 = 125,000, and 40 × 40 × 
40 = 64,000.

Figure  6-4. The use of pictograms in charts may be more or less visually misleading, as 
exemplified in (a) and (b), respectively

Figure  6-5. A misleading visual comparison of the outputs of two factories
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When categories overlap, the data is often represented by a Venn diagram. 
Consider the following data. In a group of 100 students, 30 are not studying 
a language, 50 are studying French, and 30 are studying German. Thus 10 are 
studying both French and German. Figure 6-6 shows the data diagrammati-
cally. Enclosed regions represent the different categories, but the actual sizes 
of the areas enclosed are not intended to represent the numbers within the 
categories. The intention is purely to illustrate the overlaps. It is therefore 
important when viewing Venn diagrams to be aware of the actual numbers and 
avoid visual clues from the sizes of the regions.

Figure 6-6. Venn diagram showing the numbers of students studying French and German

Venn diagrams are useful in visualizing conditional probability (Chapter 3). 
Suppose we choose a student randomly from those shown in Figure 6-6 but 
specify the condition that the student studies French. The only students of 
interest to us are those in the left ellipse, 50 in total. If we ask what the prob-
ability is that the student studies German, we see from the overlap region that 
10 students would meet the requirement. So the probability is 10/50 = 0.2.  
If, on the other hand, we specify the condition that the student studies German 
and ask for the probability that the student studies French, we are concerned 
only with the right ellipse. The probability is thus 10/30 = 0.33.

For ordinal data, although pie charts can be used, bar charts have the advantage 
of allowing the categories to be lined up in logical order. Figure 6-7 shows the 
number of medals won by a sports club in the form of a bar chart.
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Proportion
Nominal data can be rendered numerical insofar as the numbers in each group 
can be expressed as proportions or percentages of the total. Thus the data in 
Figure 6-2 yield the following proportions:

Blue Party Yellow Party Green Party Others Total
Votes 21,500 21,000 6300 4200 53,000
Proportion 0.406 0.396 0.119 0.079 1
Percentage 40.6 39.6 11.9 7.9 100

Use of proportions or percentages is often adopted to disguise the fact that 
the numbers involved are very small. It may sound impressive to be told that 
12% of the staff of a local company are still working full time at the age of 70 
years, but less so when you learn that the number represents just one person.

Ordinal data can be represented as proportions or percentages, as with 
nominal data. Thus, sales of shirts could be reported as 30% small size, 50% 
medium, and 20% large.

Figure 6-7. Bar chart showing the numbers of medals won by a sports club
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Numerical Data
Are Your Statistics Normal?

When a sample consists of numerical data, it has many features that can be quan-
tified. These features can be used to summarize the data, to provide information 
about the population from which the sample was obtained, and to indicate the 
reliability of such information. Also, the calculated properties of the sample can 
be used subsequently if the sample becomes part of a further investigation.

A well-known feature of a sample of numerical data is the average value. Indeed, 
we get a daily dose of averages from the media and from general conversation. 
But an average value, though having its proper uses, can be extremely mislead-
ing when quoted in isolation. A proper consideration of a data sample requires 
information about how the data is spread over a range of values.

Diagrammatic Representation
Chapter 5 introduced the idea of a distribution and used a sample of sizes of 
shoes worn by a group of men to plot the distribution as a bar chart (Figure 5-1). 
Notice that the area covered by the bar chart represents the total number  
of data, since each bar has a height representing the number of data in the  
particular group. If the bar chart is shown with the vertical axis representing 
relative frequency—that is, frequency divided by the total, as in Figure 7-1(a)—
the appearance is exactly the same, but the total area covered by the bar chart 
is now unity and the relative frequency is equivalent to probability. Thus we 
could deduce from the diagram that the probability of selecting from the 
group a man who wears a size 8 shoe is 0.24. The diagram may be referred to 
as a probability distribution. Generally speaking, we use relative frequency as the 
label for the vertical axis when the data is observed or measured data. When 
the diagram is theoretical or being used to determine probabilities, we label 
the axis probability.
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Diagrams such as Figure 7-1(a), which display relative frequency and have a 
numerical sequence along the horizontal axis, are often called histograms. This 
is to distinguish them from the type of bar chart shown, for example, in Figure 
6-1, where frequency is indicated on the vertical axis and where the horizontal 
axis has no numerical property. The practice is popular and has some advantage, 
but the term histogram applies strictly to diagrams in which the bars are not all 
of equal width. This is explained further in the “Grouped Data” section.

Figure 7-1(b) shows the data of Figure 7-1(a) as a relative frequency polygon, 
the term polygon indicating the joining of points with straight lines.

Figure 7-1. Relative frequency shown as (a) a bar chart and (b) a polygon
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Such data can be presented as cumulative values. The shoe size data are 
extended below to include the cumulative frequency, cumulative relative  
frequency and cumulative percentage.

Shoe Size Frequency Cumulative 
Frequency

Relative 
Frequency

Cumulative  
Relative Frequency

Cumulative 
Percentage

6 4 4 0.08 0.08 8

7 9 13 0.18 0.26 26

8 12 25 0.24 0.50 50

9 16 41 0.32 0.82 82

10 8 49 0.16 0.98 98

11 1 50 0.02 1.00 100

Figure 7-2 shows the cumulative frequency in the form of (a) a bar chart and 
(b) a polygon.
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The above data are discrete, but if the data are continuous a cumulative fre-
quency graph can contain more information than its corresponding frequency 
bar chart. To see this, suppose instead of noting the size of shoe worn by each 

Figure 7-2. Cumulative frequency shown as (a) a bar chart and (b) a polygon
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of our volunteers, we had measured the length of his foot. The data, measured 
in cm and arranged in order of size, might have been as follows:

Group 1 22.1, 22.3, 22.9, 23.7

Group 2 24.2, 24.4, 24.6, 24.6, 25.1, 25.4, 25.5, 25.8, 25.9

Group 3 26.0, 26.3, 26.4, 26.6, 26.7, 26.9, 27.0, 27.3, 27.5,

  27.8, 27.8, 27.9

Group 4 28.1, 28.1, 28.2, 28.2, 28.4, 28.5, 28.5, 28.7, 28.8,

  28.8, 28.9, 29.1, 29.3, 29.6, 29.8, 29.9

Group 5 30.0, 30.2, 30.5, 30.6, 30.7, 31.0, 31.4, 31.8

Group 6 32.1

When plotted as a bar chart the data have to be grouped. The groups could 
be, for example, as shown above, 22.0 to 23.9, 24.0 to 25.9, 26.0 to 27.9, and 
so on. Figure 7-3(a) shows the resulting bar chart. Within each group, the 
individual values become equivalent to each other, each simply contributing to 
the total number of values within the group. From the bar chart there is no 
way of knowing what the individual values are within each group. In contrast, 
the cumulative frequency graph can be plotted using each value, as shown in 
Figure 7-3(b). A smooth curve is generally drawn when the data is continuous, 
and the curve is frequently referred to as an ogive. When the vertical axis is 
cumulative relative frequency or cumulative probability, the shape of the curve 
remains the same, but the graph may be referred to as a cumulative distribution 
function or simply as a distribution function.
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Figure 7-3. Frequency and cumulative frequency shown as (a) a bar chart constructed from 
grouped data and (b) a curve plotted from individual values

Sets of data often show a tendency to cluster around a central value, as in 
Figure 7-3(a). As we would expect, there are relatively few of the small or 
large sizes. Most are close to the average size for the group. When the data 
is centrally clustered, the cumulative frequency graph has a characteristic 
S-shape as seen in Figures 7-3(b). The graph additionally provides a convenient 
way of determining the median, or middle value, as Figure 7-3(b) illustrates. 
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The quartiles, at one quarter and three quarters of the values, are frequently 
quoted in statistical conclusions and are also shown. The interquartile range 
embraces the middle half of the data.

If we have a bar chart with the peak at the low end of the data, the distribution 
is said to be positively skewed. Family incomes would be expected to be of this 
kind, a peak occurring well below the midpoint value (Figure 7-4(a)). When 
the peak of the distribution is towards the high end of the data, the distribu-
tion is negatively skewed. If we looked at ages of people at death, we would 
expect to see the distribution negatively skewed, with most people dying in 
old age (Figure 7-4(b)).

Figure 7-4. (a) Positively and (b) negatively skewed distributions
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Normally Distributed Data
Fortunately, in the statistical term normally distributed the word normal does 
carry the conventional meaning of “usually encountered” or “of everyday 
occurrence.” Nevertheless, it is not easy to summarize in a few words what is 
meant by the important concept of normally distributed data.

Normally distributed data are centrally clustered and symmetrical—i.e., not 
skewed positively or negatively. They are, however, special in the way the  
distribution varies across the range of values encompassed.

Heights and weights of people are normally distributed. Suppose we measure 
the heights of a small sample of men, say 20. We could represent the data in 
the form of a bar chart with a group width of 8 cm, as shown in Figure 7-5(a). 
Central clustering around a mean value is clearly shown but the data are 
presented very coarsely with wide steps in relation to the total width. If we 
decide to reduce the group width to 4 cm in an attempt to improve the pre-
sentation we might end up with Figure 7-5(b). Because we now have so few 
data in each group, the bar chart begins to lose its shape.

If we now consider having larger samples, we can reduce the group width and 
still have a sufficient number in each group to represent the distribution of 
heights in a reliable way. Figure 7-5(c) shows what we might get with a sample 
size of 10,000 and a group width of 2 cm. The bar chart now has a smoother 
outline. Extending the process to larger sample sizes and narrower group 
widths eventually gives a smooth curve, superimposed on the bar chart in 
Figure 7-5(c), which is the normal distribution. The curve, also known as the 
Gaussian curve, has a characteristic bell shape. It has an exact though com-
plicated mathematical formula that defines it precisely. It is not, of course, 
derived from bar charts in the way I may have implied: the description via bar 
charts is useful in providing a simple and correct view of the meaning of the 
normal distribution.
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Just as in the bar charts, where the number of data within each group is indi-
cated by the area of the corresponding vertical bar, any vertical strip defined 
under the normal distribution curve represents the relative number of data 
lying between the horizontal limits of the strip. The proportion of data within 
the strip relative to the total number of data is thus equal to the propor-
tion of the area within the strip relative to the total area under the curve. 
Furthermore, this proportion is equal to the probability of a man, chosen at 
random from the total, having a height lying between the limits of the strip.

Figure 7-5. Distributions of heights of men
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Progressing from the bar chart in Figure 7-5(a) to the continuous curve in 
Figure 7-5(c) necessitates a change in the labeling of the vertical axis. For the 
bar chart, the label is frequency. Provided the bar width is constant across the 
whole of the diagram, the scale on the axis will always allow us to read off the 
frequency. However, once we replace the set of bars with a smooth curve, we 
can no longer read off frequency: the frequency will depend on the width of 
strip that we choose. The axis is labeled frequency density.

Clearly, each set of data will have its own scale in terms of the numerical values 
on the horizontal axis and the frequency on the vertical axis. But the shape of 
the curve will be the same, provided the data follow a normal distribution. In 
order to utilize the normal distribution in analyzing data, a standard normal 
distribution, shown in Figure 7-6, is defined with a peak value located at zero 
on the horizontal axis. Thus the curve extends symmetrically in the positive 
and negative directions. The horizontal scale is explained in the “Spread of 
Data” section of this chapter. The vertical scale is adjusted so that the total 
area under the curve is 1. The area of any vertical strip then expresses directly 
the probability of occurrence of values within the strip. Any set of data fitting 
a normal distribution can be reduced to the standard normal distribution by a 
change of scale, taken up later in the context of analyzing data.

Figure 7-6. The standard normal distribution

This characteristic curve results whenever the variation of the data is due to 
numerous random effects. The effects may be intrinsic to the property being 
measured, as in the example of the heights of the men sampled, but in other 
situations the effects may be due to errors in the method of measurement. 
Repeated measurements of the height of Mount Everest would be expected 
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to give a normal distribution of data clustering around a central value. The 
normal distribution is found to arise in many situations of data collection 
and is used extensively in subsequent statistical analysis. There are, of course, 
other special distributions that are encountered, and I will describe some of 
these in later chapters.

Examples of data that conform to the normal distribution fall into several cat-
egories. The first category is where there exists a true value and the sample 
consists of estimates or measurements of the value, which inevitably are inac-
curate to some degree. The inaccuracies arise from random errors in the 
observation or measurement methods. Repeated measurements of the den-
sity of pure copper, various chemical and physical constants, or estimates of 
the volume of water in the oceans of the world would fall into this category.

The second category is where an attempt has been made to produce items 
consistent in such properties as size and weight. Because of random fluctua-
tions in materials or manufacturing processes each item is slightly different. 
Measurements on a number of the items would be expected to follow a  
normal distribution.

The third category consists of data that are correct (within some error 
of measurement, of course) but in reality quite different. That is to say, the 
observed differences are due not to small errors of measurement or manu-
facturing, as in the previous two categories but reflect their differences by 
nature. Nevertheless the values exhibit a tendency to cluster around a central 
value—the likelihood of departure greater or smaller than the central value 
being less the greater the departure. Examples of such data are the heights 
and weights of people, examination marks, and intelligence quotients. A com-
parison between this category and the previous category raises an interesting 
point. It is as if natural processes attempt to produce everything the same, as 
we do in our factories, but don’t quite succeed because of random errors, just 
as we don’t quite succeed. Viewed this way, categories two and three are in a 
sense the same.

The fourth category consists of data that theoretically conform to distribu-
tions other than the normal distribution but that, under certain circumstances, 
can be well represented by the normal distribution. Usually it is when samples 
are large that we find the closest approximations to the normal distribution.

The ability of the normal distribution to represent data that does not con-
form exactly to the theoretical requirements of the distribution helps to give 
it its primary role in statistics. In reality, of course, no set of data is likely to 
conform exactly. The theoretical distribution tapers to infinity in both direc-
tions, indicating that there is always a probability, albeit very small, of observing 
a value of any size. In reality, this cannot be so, not only because of practical 
limits on the maximum value but also because the low-value tail is limited by 
the value of zero. Negative values would be meaningless in most situations.
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Distribution Type
A data sample may, simply by inspection, be judged to be of a particular type of 
distribution or approximately so. Data may be seen to be approximately nor-
mally distributed, clustering around a central value with few extreme values. 
Other sets of data may appear, for example, to be uniformly distributed with 
no evidence of central clustering.

It is possible to make a comparison between the data and an assumed distri-
bution in a way that provides a measure of the likelihood of the data belonging 
to the distribution. Such a comparison is called a goodness-of-fit test.

The data are laid out in sequence, and calculations are made of the corre-
sponding values that are obtained on the basis of the assumed distribution. For 
example, we may have data showing how many employees are late for work on 
different days of the week, and we wish to test the hypothesis that the number 
late for work is independent of the day of the week. If the hypothesis is correct, 
the distribution of data should be uniform: that is, the numbers for different 
days should be the same within the likely random fluctuations. We therefore lay 
out the expected data, each value being the average (mean) of the actual data:

Day Late 
Arrivals

Expected  
Late Arrivals

Difference Difference 
Squared

Difference 
Squared Divided 
by Expected

e d d2 d2/e

Monday 25 24 1 1 1/24

Tuesday 16 24 –8 64 64/24

Wednesday 18 24 –6 36 36/24

Thursday 28 24 4 16 16/24

Friday 33 24 9 81 81/24

Total 120 198/24 = 8.25

Mean = 24 Degrees of Freedom = 4

The differences between the two sets are calculated. From the squares of these 
differences, a statistic called chi-squared, c2 (Greek letter chi), is determined. In 
this example, chi-squared = 8.25. You will appreciate that a value of zero would 
be obtained if the data agreed exactly with the expected data. So the larger 
the value is, the more likely the distribution is not uniform. The value obtained 
is referred to tables of the chi-squared distribution to obtain the probability 
of there being a dependence on the day of the week as opposed to the actual 
number of late arrivals being subject to a random fluctuation. The following is 
an extract from tables of the chi-squared distribution:
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Degrees of  
Freedom

10%  
Significance

5%  
Significance

1%  
Significance

0.1%  
Significance

1 2.71 5.02 6.64 10.80

2 4.61 5.99 9.21 13.80

3 6.25 7.82 11.30 16.30

4 7.78 9.49 13.30 18.50

5 9.24 11.10 15.10 20.50

Figure 7-7. Comparison of an observed distribution and a supposed uniform distribution

For a non-uniform expected distribution, the required expected values would 
have to be obtained from tables. To test whether data conformed to a normal 
distribution, for example, values would be obtained from tables of the nor-
mal distribution. The calculation would then proceed as above, the differences 
between the actual values and the expected normally distributed values being 
squared and summed.

I need to explain the term degrees of freedom, which I stated above is a  
feature of the data and which is required to obtain the level of significance 
from the published tables. In a sense, the freedom referred to is the freedom to be 

In this example we find from the tables that, with 4 degrees of freedom (see 
above), 8.25 lies between the values for 10% and 5% significance. Thus we have 
a greater than one in twenty (5%) chance of being wrong if we claim that the 
number of late arrivals does depend on the day of the week. The claim would 
be unreliable. Figure 7-7 shows the distribution of the data and, for compari-
son, the supposed uniform distribution.
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different—and this, I suggest, is a useful way of appreciating what is meant by 
degrees of freedom. If we have data consisting of just one value, there is no 
difference involved and no variation or measure of uncertainty. If we have two 
values, there is one measure of difference, that being the difference between 
the two values. Thus we have a measure of variation based on a single differ-
ence, and we refer to this as one degree of freedom.

With three values—a, b, and c—there are two measures of variation: a–b and 
b–c. Note that a–c is not a further measure of variation, because its value is 
fixed by the other two differences. Thus we have two degrees of freedom. 
With four values, we have three degrees of freedom, and so on.

The degrees of freedom in the above example are shown as four. There are 
actually five differences involved—i.e., the difference between each of the five 
daily values and the number 24. However, the value 24 was obtained from 
the five daily values by ensuring that the totals of the actual and expected 
values were the same. This restriction removes one degree of freedom, leav-
ing four. When distributions other than a uniform distribution are selected for 
comparison, there may be additional reductions in the degrees of freedom.  
This arises when additional features of the assumed distribution have to be 
calculated from the original data.

Various statistical tests are in standard use to establish the reliability of esti-
mated values from the data, or the likelihood of there being differences or 
similarities between sets of data. In these tests, use is made of published tables, 
and the tables generally require the appropriate degrees of freedom of the 
data to be entered.

The chi-squared test can also show evidence of surprisingly good agreement 
with a supposed distribution. Too-good agreement should be viewed with 
some suspicion. Is the data genuine? Has some of the data been removed?

There are other goodness-of-fit tests. The likelihood-ratio test produces a statis-
tic, G2, which is similar to c2. The Kolmogorov-Smirnov test is similarly based on 
the differences between the observed data and the data expected from the 
assumed distribution.

Averages
The word average in common usage refers, from a mathematics point of view, 
to the mean value—the sum of all the data in a collection divided by the num-
ber of data. The mean value expresses a central value around which the other 
values are arranged. It is a useful summary of the data, especially when, evident 
from the nature of the data, there is a central clustering effect. As we said  
previously, the heights or weights of people would be expected to cluster 
around the mean value, there being relatively few people with extreme, large or 
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small, height or weight. The description of the normal distribution in the section 
“Normally Distributed Data,” recognized the symmetry about the peak value, 
which is the mean value.

Using a mean value where there is no clustering would be misleading and 
rather pointless in some situations. But not always: the scores when a die is 
repeatedly thrown show no central clustering, each of the possible six scores 
occurring roughly equally, but the average score is useful in allowing an esti-
mate of the total score expected after a given number of throws. Thus, the 
mean value is (1+2+3+4+5+6)/6 = 3.5—so ten throws, say, would be expected 
to give a total of about 35.

Statisticians use the word expectation to mean the expected mean value as 
opposed to the achieved mean value. So if we throw a die a number of times, 
the expectation is 3.5. The actual achieved mean value is likely to be close to 
3.5 but could be any number between 1 and 6.

There are two other averages frequently used in statistical presentations: 
the median and the mode. The median, described in the “Diagrammatic 
Representation” section and shown in Figure 7-3, is the middle value of the 
data ordered by size, such that half the data are less than and half are greater 
than the median. The mode is the most common value—i.e., the value that 
occurs most frequently in the data. There could be more than one mode in 
the sample, whereas the mean and median have unique values.

The decision as to which average to use depends on the nature of the data. The 
use of an inappropriate average can distort the impression gained. If we were 
looking at the average number of children per family, a calculation of the mean 
would probably give a non-integer value, 2.23 say. Although no family has 2.23 
children, the value could be extremely useful because, given a total number of 
families, it would allow us to calculate the best estimate of the total number 
of children. The median would probably lie between 2 and 3, telling us that half 
the families had 2 or fewer children and half had 3 or more, which is not very 
informative. The mode, with a value of 2 probably, would at least tell us that the 
families were more likely to have 2 children than any other number.

If we were looking at family incomes, we would have different considerations. 
The mean income could be, say, $50,000 per annum. However, there will be in 
the data a few very high earners with incomes three or four times the mean. 
Most families will lie well below the mean. Thus there is an upward bias effect 
that can be misleading. If we work out the median we might find that the value 
is $40,000, showing that half the families have incomes less than this. If we wish 
to see what the mode is, we find that because income has continuous values 
(no finer than a penny, of course), there are insufficient families, or perhaps 
none, with the same value of income. This could be overcome by rounding off 
the data or, better, by grouping the data. This might give us an answer that the 
most common family income is in the range $35,000 to $40,000.
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As data fit the normal distribution more exactly, the mean, median, and mode 
come closer together. As the distribution becomes positively skewed, the mode 
moves below the mean; as it becomes negatively skewed, it moves above the 
mean. The median usually lies between the mode and the mean.

Choice of the inappropriate average can give erroneous impressions of the 
meaning of the data and is often done with the intention of misleading. The 
situation is made worse when the type of average that has been used is not 
specified. The moral is to be wary of averages of unspecified type and—even 
when it is stated that the mean, median, or mode has been quoted—to explore 
the consequences of viewing the results in terms of the other averages.

Spread of Data
Average values are extremely useful but give no indication of the spread of 
the values from which they were derived. It is not possible to make any judg-
ment about how valid it will be to base decisions on the average values. Some 
indication of the spread of the data should accompany any quoted average.

The maximum and minimum values, and the difference between them, the 
latter being referred to as the range, are easily quoted but of limited use. They 
give no information as to how the individual values are distributed within the 
sample. Of course, if one were interested in knowing the weight of the heavi-
est parcel to be transported or the smallest size of skates to be provided at a 
skating rink, then the information could be useful.

Of more general use are the quartiles, described in the first section of this 
chapter and Figure 7-3. The lower quartile, or 25 percentile, is defined such 
that one quarter of the data lies below it and three quarters above. The upper 
quartile, or 75 percentile, occupies a corresponding position with a quarter of 
the data above it and three quarters below. The interquartile range is the dif-
ference between the two quartiles and thus embraces the middle 50% of the 
data. Sometimes other percentiles are quoted: the 90 percentile, for example, 
embraces the lower 90% of the data.

The most useful measure of the spread of data is the standard deviation. This 
is calculated using all the data in the sample. The deviation of each data value 
from the mean value contributes to the standard deviation, but each deviation 
is effectively weighted, by squaring the value, to give greater contribution to 
the larger deviations. The squares of all the deviations are totaled and the mean 
calculated. The square root of this mean value is the standard deviation.



Better Business Decisions from Data 71

As an example, suppose we have the following rather unlikely, but easy on the 
eye, values:

2 3 4 4 5 5 6 6 7 8

The mean value is 50/10 = 5.

The deviation of each value from the mean is

–3 –2 –1 –1 0 0 1 1 2 3

and the squares of the deviations are

9 4 1 1 0 0 1 1 4 9

The mean of the squares of the deviations is 30/10 = 3, and the standard 
deviation is the square root of 3—viz., 1.73.

The standard deviation has particular meaning in relation to the normal distri-
bution. It is half the width of the normal curve at a particular height. Its position 
is such that the area under the curve between one standard deviation below 
the mean and one standard deviation above the mean is 0.683 of the total 
area under the curve. It follows that 68.3% of the data lies within one stan-
dard deviation of the mean value. Two standard deviations either side of the 
mean value include 95.4% of the data, and three standard deviations include 
99.7% of the data. These figures provide a very useful quick way of visualizing 
the spread of data when the mean and standard deviation are quoted. In the 
example above, one standard deviation each side of the mean is from 3.27 to 
6.73, and 60% (6 of the 10 values) of our data lie within this band.

The preceding discussion sets up the completion of the description of the 
standard normal distribution introduced in the “Normally Distributed Data” 
section and shown in Figure 7-8. The mean value, which is the central peak value, 
is located at a value of zero on the horizontal axis, the area under the curve 
is equal to 1, and now the scale along the horizontal axis is in units of stan-
dard deviations. The vertical scale is probability density but it is not of direct  
interest, having been selected in order to render the area under the curve 
equal to unity, given that the horizontal scale is in units of standard deviations.
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The square of the standard deviation is called the variance. It is used exten-
sively in statistical analysis by reason of its special properties, discussed later.  
It has no readily visualized meaning: indeed, its units are rather odd. If our stan-
dard deviation happens to be in dollars, the variance is in dollars squared—or, 
if you prefer, square dollars (whatever they are!).

Even when the data does not conform well to the normal distribution, the 
standard deviation still provides a useful measure of the spread of the data. To 
illustrate this point, consider data that we might accumulate by throwing a die. 
Because all numbers from 1 to 6 have equal chance of appearing, we would 
expect to get nearly the same number of each of the scores. The data would 
conform to a uniform distribution, and the bar chart would be flat-topped, not 
looking anything like the normal distribution. The mean score is 3.5, and the 
standard deviation is calculated to be 1.87. So we would predict that about 
two thirds of the scores would lie between 1.63 and 5.37. In fact, two thirds 
of the scores are from 2 to 5, which is roughly in agreement.

Statistical tables are available that give values for the area under the stan-
dard normal distribution curve at various distances from the mean. The total 
area under the curve is defined as 1, so the partial areas appear as fractions 
between 0 and 1 and represent directly the probability of occurrence of the 
required range. The tables are not particularly easy to use. Because the curve is  
symmetrical, the tables give values for only half of the distribution—the 
positive, right-hand, half. The economy is justified in view of the extent of  

Figure 7-8. The percentage of data within a number of standard deviations from the mean
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the tables demanded by the level of precision required, but it does mean that 
considerable care has to be taken when probabilities represented by areas 
extending to both sides of the mean are required.

Figure 7-9 shows the values of the standard normal distribution in a simpler, 
but abridged, form that is more convenient for obtaining approximate values 
and for checking that declared values are not grossly in error. The values are 
given to only two digits, to economize on space; and they are given as per-
centages, which are more readily appreciated than the conventionally used 
decimal fractions. Furthermore, the probability between any two limits can be 
read immediately, whereas the published tables require separate values to be 
extracted for the two limits and the difference to be then calculated.
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It needs to be emphasized that the probability of occurrence is represented by 
an area. We are asking for the probability of occurrence between two values. 
We cannot ask for the probability of a unique value being observed. In the ear-
lier example of the heights of people, we cannot ask for the probability of an 
adult being exactly 160 cm tall. This would be a single vertical line on the normal 
distribution graph and would enclose no area. The answer is that there is no 
probability of an adult being exactly 160 cm tall. If this seems odd at first sight, 
note that the word “exactly” is used. We could ask for the probability of an 
adult being between 159.5 and 160.5 cm tall, between 159.9 and 160.1 cm tall, 
or between any other closer limits. These narrow strips would have areas rep-
resenting the required probabilities. The areas would be small, so the resulting 
probabilities would be small. This is perfectly reasonable inasmuch as the prob-
ability is indeed small of finding someone of a very precisely defined height.

The probability of occurrence can be expressed as a proportion. Thus, if the 
probability of occurrence of an adult of height between 159.5 cm and 160.5 
cm is 0.1, one can say that that the proportion of adults between 159.5 cm 
and 160.5 cm tall is 0.1, or one tenth, or one in ten.

Grouped Data
Data are often not available in detail but are grouped at the outset. Information, 
for example, may be gathered from a number of people of different ages, but 
the ages may not be recorded or even obtained individually but simply classi-
fied within bands. The bands have to be carefully defined and equally carefully 
understood.

We might have bands each of ten years in extent. If we define a band from 20 
years to 30 years and the next one as 30 years to 40 years, we do not know in 
which group to locate someone who is 30. To avoid this problem, we have to 
define the bands as 20 years to 29 years and 30 years to 39 years. If the data is 
not discrete, a different procedure has to be adopted. Heights of people vary 
continuously, so we cannot have, for example, a group 130 cm to 139 cm and 
then one from 140 cm to 149 cm. There is nowhere to locate 139.5 cm. The 
groups have to be “equal to or greater than 130 cm and less than 140 cm” 
followed by “equal to or greater than 140 cm and less than 150 cm.” These 
designations are quite a mouthful and are instead usually shown using math-
ematical notation as ³130 to <140 followed by ³140 to <150.

If a single representative value is quoted for the group, it is usually the mid-
point of the group width. Take note, however, that if the values have been 
rounded off, the midpoint may not be where it seems. If the group is 10 to 19 
and the values have been rounded to the nearest whole number, the group 
actually ranges from 9.5 to 19.5. The midpoint is then 14.5. But if the group is 
³10 to <20, the midpoint is 15.
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Sometimes the groups are not of equal width. This may be because of uneven-
ness in the sampling or simply because there is a real shortage of data within 
certain bands. Ages of people, for example, are more thinly spread between 80 
and 100 years than between 20 and 40 years. Notice that when this happens, 
the area of each block on a bar chart must still represent the total number of 
data values within the specified band. The following data can be plotted as a 
relative frequency bar chart, shown in Figure 7-10(a):

Age Range 
(Years)

20 to 29 30 to 39 40 to 49 50 to 59 60 to 69 70 to 79 80 to 89 90 to 99 Total

Frequency 10 13 12 8 4 1 0 2 50

Relative 
Frequency

0.20 0.26 0.24 0.16 0.08 0.02 0.00 0.04 1.00

The groups are of equal width. Each person is represented by an area of 0.02 
so that the total area is 1.00 for the 50 people. The tail end of the distribution 
is uneven; to avoid this, the data can be pooled in a wider group, as shown in 
Figure 7-10(b). The final group has just three members, so the height is 0.02 in 
order to make the area of the final block equal to 0.06 units. Notice that we 
cannot now label the axis as relative frequency because the final group (70 to 
99 years) has an actual relative frequency of 0.06. The correct designation is 
relative frequency density, as shown.



Better Business Decisions from Data 77

I can now explain the difference between a bar chart and a histogram.  
A bar chart represents discrete data or discrete groups of data, and the groups 
are all of the same width. The vertical axis represents frequency or relative 
frequency, and the latter is equivalent to probability. In a histogram, which also 
represents discrete groups of data, the groups are not all of the same width. 
The vertical axis represents frequency density or relative frequency density, 
the latter being equivalent to probability density. The vertical axis on a histo-
gram does not represent probability: it is the area of the block that represents 
the probability of the data being within the limits of the group. The histogram 
is thus analogous to continuous data curves, which, as explained in relation to 
the normal distribution, are also labeled probability density and indicate prob-
ability by the area under the curve.

Figure 7-10. The difference between (a) a bar chart and (b) a histogram
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Pooling and Weighting
Several sets of data can be brought together to provide a pooled mean 
value. The pooled value is more representative because it is based on more 
observations.

When pooling results, a weighted mean is often more appropriate in order to 
allow some values to have a greater influence on the final result. Sometimes 
this is essential to avoid the result being in error. For example, if I buy ten 
apples for 20¢ each in one shop and 4 apples for 24¢ each in another shop, 
the mean cost per apple is clearly not 22¢. The appropriate indicator is the 
weighted mean, which is the total money paid divided by the total number of 
apples purchased— i.e., (20 × 10 + 24 × 4) / (10 + 4) = 21.1¢.

The need for weighting is not always so apparent. The tires on the front wheels 
of my car wear out much faster than those on the rear wheels. I get 45,000 
miles from the rear tires but only 15,000 miles from the front ones. So, on 
average, I get 30,000 miles—that is, (45,000 + 15,000) / 2—from my tires. This 
is not correct. In 45,000 miles, I will wear out one pair of rear tires and three 
pairs of front tires, four pairs in all, so a tire lasts on average (45,000 × 1 + 
15,000 × 3) / 4, which is 22,500 miles.

Sometimes the need for weighting seems very surprising. Suppose you catch 
a bus on a regular basis. The buses are scheduled to arrive every 10 minutes, 
so this is the mean time between buses; but some will be early and some late. 
If you arrive at the bus stop at random times, what will be your mean wait-
ing time? It seems at first sight that the answer is five minutes, but this is not 
correct. You are more likely to arrive in one of the longer gaps between buses 
than in one of the shorter ones, so your waiting time will be slightly longer 
than five minutes.

A simple example will illustrate this. Think of two buses: one arrives  
12 minutes after the previous one, and the second one arrives after a further  
8 minutes, so the mean arrival time is 10 minutes. When you arrive in the 
12-minute gap, your mean waiting time is 6 minutes; and when you arrive in 
the 8-minute gap, your mean waiting time is 4 minutes. The longer waiting 
time is encountered more often than the shorter waiting time, the ratio being 
12 to 8, so the overall mean waiting time has to be obtained by weighting:

(6 x12 + 4 x 8)/20 = 5.2 minutes.

Weighting in such examples is necessary and can be applied unambiguously, 
but the weighting may sometimes be a matter of judgment. If several similar 
investigations have been carried out previously, it may be decided that some of 
them, though of value, are not as reliable as others because of the techniques 
used. So the less reliable results are pooled with the others but given a lower 
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weighting. In the following calculation, three estimates of the height of Mount 
Everest—h1, h2, and h3—are pooled, but h3 is given only half the weight of the 
other two:

Pooled estimate = (2h1 + 2h2 + h3)/5.

Chapter 5 described simple index numbers as, in effect, percentages referred to 
a selected base value. Many index numbers that are frequently encountered are 
derived from more complex calculations because the values are averages of sev-
eral items. Thus the UK Retail Price Index is based on prices of various commodi-
ties on a specific date, the prices of the commodities being averaged. Different 
commodities are purchased in different quantities, so the average price has to be 
obtained by weighting the average in relation to the quantities purchased. Clearly 
a loaf of bread costing £1 and a liter of wine costing £6 cannot simply be averaged. 
If two bottles of wine are purchased for every 35 loaves of bread, we take the 
price of two bottles of wine, £12, add it to the price of 35 loaves of bread, £35, and 
divide the result by 37, the total number of items. Thus the weighted average price 
is (35 x 1 + 2 x 6)/37 = £1.27. Of course, even the initial prices, £1 and £6, would 
have to be obtained by averaging, taking account of the different types, different 
brands, and different shops.

The Retail Price Index involves defining the list of commodities to be included 
and strict procedures for recording the prices at defined outlets at defined 
times. The commodities are grouped according to type, so an index can be 
calculated for various groups of commodities. For example, the overall index 
is constructed from group indices representing household goods, food, hous-
ing, and other groups. The household goods index is constructed from section 
indices representing household consumables, furniture, and other sections. 
The household consumables section index is constructed from item indices 
representing envelopes, toilet paper, and other items. The item index for enve-
lopes is constructed from those of specified type purchased in specified shops 
in specified locations. In total about 700 items are represented in the Retail 
Price Index.

When the actual quantities purchased are used to determine the weights to 
be applied in the averaging, the choice still remains as to whether the quanti-
ties should be those purchased in the base year or those bought in the cur-
rent year. The index that results from using the base year quantities is called a 
Laspeyres index. The index incorporating the current year quantities is a Paasche 
index and clearly involves more time and expense in its determination.

As an example, suppose we have data for our base year as follows:

Bread £1 per loaf Relative quantity 35 loaves

Wine £6 per bottle Relative quantity 2 bottles.
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The data for a subsequent year, for which we require the index, are

Bread £1.20 per loaf Relative quantity 35 loaves

Wine £8 per bottle Relative quantity 1 bottle.

The Laspeyres index, using base year quantities, is calculated thus:

£1x35 = £35  £1.20x35 = £42

£6x2   = £12  £8x2       = £16

Total £47  Total       £58

Index = (58 / 47) × 100 = 123.

The Paasche index, using current year quantities, is calculated thus:

£1x35 = £35  £1.20x35 = £42

£6x1   = £6  £8x1       = £8

Total £41  Total       £50

Index = (50 / 41) × 100 = 122.

The two indices are quite similar unless the quantities vary appreciably from 
year to year. A disadvantage of the Paasche index is that indices for different 
years cannot be compared with each other but only with the base year. The 
Laspeyres index allows comparison between any two years. The UK Retail 
Price Index is a Laspeyres-type index, but its derivation is modified in a num-
ber of ways. Other well-known index numbers are those illustrating the prices 
of shares, such as the FTSE 100 and the Dow Jones, and various housing price 
indices.

Be wary of pooled data that can apparently show a quite different result. The 
pooling may have been carried out to disguise an embarrassing set of data. 
Consider the following example.

A company has two new salesmen, Smith and Brown. In their first week Smith 
makes 5 sales from 40 contacts, giving him an average of one sale per 8 con-
tacts. Brown makes one sale from 10 contacts. So Smith has the best average. 
The situation is illustrated in Figure 7-11. In the second week, Smith makes 
3 sales from 10 contacts, giving him an average of one sale per 3.33 contacts. 
Brown makes 10 sales from 40 contacts, giving him an average of one sale per 
4 contacts. So Smith again has the better average.
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But what happens if we pool the results of the two weeks? Smith has a total 
of 8 sales from 50 contacts, whereas Brown has a total of 11 sales from 50 
contacts. So Brown has the better average. Who is the better salesman? Some 
might argue that Smith is better because he made the greater contribution to 
the company’s performance in both weeks. Others could say that Brown is bet-
ter because his better performance is revealed when a greater amount of data 
is available. The most realistic conclusion is that there is not sufficient evidence 
to distinguish between them. The difference between their own performances 
in the two weeks is greater than the difference between their own and their 
colleague’s performance. Also, there may be one or more variables affecting the 
conditions during the two weeks, of which no account has been taken.

This kind of situation is known as Simpson’s paradox and is usually met with 
surprise. Apart from its curiosity value, it does illustrate very well the fact that 
statistical results should not be accepted blindly but should always be judged 
alongside other evidence and practical considerations.

Figure 7-11. Simpson’s paradox
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FOOD FOR THOUGHT

The consultant’s report lay on the desk. Liz Fisher, Head of Food Processing at 
Moroney Cookie Company, picked it up and started to read. The company had decided 
to introduce a new low-sugar cookie, and Liz’s team had produced two recipes, both of 
which were judged to be marketable.

Graham Consultants had been employed to test the two new cookies on the public 
before a decision was made as to which one would go into production.

The report described how two shops, already selling Moroney cookies, had each 
agreed to set up two stalls on a busy afternoon. One stall, handling recipe A, offered 
each willing customer a sample cookie and then invited the customer to purchase a 
packet at a reduced price. The second stall did the same with cookies of recipe B. The 
customers did not know that the two stalls were offering different cookies. The number 
of customers sampling the cookies and the number of customers purchasing a packet 
were recorded.

The report concluded that recipe A was more popular than recipe B at both shops, 
though the difference was not great.

Liz thought the figures looked rather odd. She was not happy with the findings:

Store 1

Recipe A 22 purchases from 24 sampled 92%

Recipe B 89 purchases from 106 sampled 84%

Store 2

Recipe A 50 purchases from 71 sampled 70%

Recipe B 18 purchases from 26 sampled 64%

Suspecting that the situation was not satisfactory, she decided to pool the results from 
the two stores and got the following result.

Recipe A 72 purchases from 95 sampled 76%

Recipe B 107 purchases from 132 sampled 81%

The situation was now reversed: recipe B was more popular than recipe A! Liz saw 
that this was an instance of Simpson’s paradox. One or more additional variables were 
influencing the results. The experimental arrangements at the two stores were not 
comparable.

She knew that the report had to be rejected and Graham’s would have to investigate 
the source of the problem. The experiment would have to be repeated with improved 
controls.

She picked up the phone ….
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Estimated Population Properties
The population, to recap, is the complete, perhaps hypothetical, and perhaps 
infinite, set of data from which the sample was randomly drawn. It is necessary 
to realize that the information gained from the sample may not be representa-
tive of the population characteristics without some modification, although the 
modifications are generally quite minor. It has been mentioned already that 
that the sample sometimes consists of the entire population, which simplifies 
matters.

The best estimate of the population mean, m, is the sample mean, cm. Statisticians 
use the word expectation rather than mean when speaking of an expected mean 
rather than a calculated mean. Thus one refers to “the mean of a sample” and 
“the expectation of the population” from which the sample was drawn.

The best estimate of the standard deviation of the population, s, is the sample 
standard deviation, s, slightly modified. The modification is required because 
sample standard deviations slightly underestimate the population standard 
deviation, particularly when the sample is small. The sample standard devia-
tion has to be multiplied by the square root of the ratio of n to n-1, to give 
the estimate of the population standard deviation, s, where n is the number 
of values in the sample. Thus,

s = æ
è
ç

ö
ø
÷s

n
n -1

,

and the estimated population variance is

s2 =  s2 n/(n-1).

If the sample is small the alteration of the sample standard deviation may be 
appreciable, but for large samples the ratio n/(n-1) is close to unity and has a 
small effect only.

If two samples are pooled to provide a larger single sample, the estimated 
mean value for the population is obtained in the usual way of obtaining a 
weighted mean. Thus,

m, =  (n1 cm1 +  n2 cm2 )/(n1 + n2) ,

where the suffixes 1 and 2 refer to the two samples. The estimated pooled 
variance is

s2 = {(n1- 1) s1
2 + ( n2- 1) s2

2 }/(n1 + n2 - 2) ,

and the estimated pooled standard deviation is the square root of this.
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The best estimate of the population proportion is the sample proportion, and 
pooling is dealt with in exactly the same way as for the estimated population 
mean.

Confidence Intervals
The preceding section said that the sample mean provides the best estimate 
of the population mean (the expectation). Thus if we survey people attending 
a particular film at the local cinema and find that in a sample of 40 people the 
mean age is 32 years, then this provides the best estimate of the mean age of 
the people who did attend or might have attended under the same circum-
stances. Clearly this may easily be in error, and a useful procedure is to attach 
confidence limits. These are calculated from the population variance, but before 
you see how it is useful to see how they are presented and what they mean. 
The result might be quoted as, for example,

Mean age = 32 ± 5  (95% confidence) ,

meaning that the true population mean will be found to lie between 27 years 
and 37 years in 95% of such investigations.

Note that it does not mean that there is a 95% probability of the true popula-
tion mean lying in the interval 27 to 37. The true value is either within a given 
interval or not. The issue is subtle and may be illustrated as follows. Suppose 
the true population mean is 26. The sample we obtained estimated the mean 
to be between 27 and 37, which is not correct. However, we were unlucky, 
as nineteen other similar samples would, on average, have included 26 in the 
range of uncertainty. It can be seen that this is different from saying that the 
true value of 26 has a 95% chance of being between 27 and 37. It has no 
chance of being so. However, it is clearly a fairly infrequent occurrence to have 
established a range that does not trap the true value, and it is easy to see how 
the meaning of confidence limits is often wrongly stated.

Let us now see how the confidence limits are obtained. From the previous 
description of the normal distribution in the second section of this chapter, 
we know that a single value drawn from a population has approximately a 
two-thirds chance of being within one standard deviation of the mean. The 
single value is the best estimate of the mean, but it would clearly be a very 
poor one. With just one value—one person in the cinema, for example—we 
cannot calculate a standard deviation, so we do not even know how poor our 
estimate is.

In reality, we take a sample and calculate the mean value. This is now our 
best estimate of the population mean. We have a sample mean of 32 years in 
our cinema example, obtained from, we suppose, a sample size of 40. We can 
calculate a standard deviation from the sample and obtain a value of 16 years, 
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say. This allows us to calculate the best estimate of the standard deviation of 
the population, which is found to be 16.2, after making the minor correction 
described in the preceding section.

The estimate of the population mean is more reliable than the one from a single 
data value, but how much more? It turns out that when means of samples are 
obtained, they themselves are distributed normally but with a smaller standard 
deviation than that of the population. In fact, the standard deviation of samples 
of equal size is equal to the standard deviation of the population divided by the 
square root of the number of data in each sample. So the larger the sample, the 
more likely the sample mean will be close to the population mean. This is what 
one would expect. The standard deviation of sample means becomes

16.2

(40)
2.56.=

Reference to tables of the standard normal distribution shows that there is a 
probability of 95% that a value lies within 1.96 standard deviations either side 
of the mean value. In our example,

1.96 x 2.56 = 5.02 .

Hence, we have the conclusion that that the estimated mean age of those 
attending or potentially attending the cinema is 32 ± 5 (95% confidence).

It is worth adding that the means of samples are found to be distributed nor-
mally, or nearly so, even when the original data departs considerably from a 
normal distribution.

It is useful to note that the value of 1.96 is always associated with the 95% 
confidence limits, so there is no need to consult tables of the standard normal 
distribution on each occasion. Similarly, for other confidence limits, appropri-
ate values that can always be used are summarized as follows:

m c s= ± ´m n1.96 / (95% confidence)

m c s= ± ´m n2.33 / (98% confidence)

m c s= ± ´m n2.58 / (99% confidence)

       m c= ± ´m n3.29 / (99.9% confidence)s
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where

cm  = sample mean

s = estimated standard deviation of the population

n = sample size

So far in this section we have assumed that our sample is large. If our sample 
is small, less than about 30, we do not use the normal distribution. Instead, 
we have to refer to tables of a distribution called Student’s-t. This distribu-
tion varies as the number of data changes, so we cannot fix the number of 
standard deviations for a given level of confidence as we did above. As the 
number of data in the sample increases, the t-distribution comes closer to 
the normal distribution—hence the need for the t-distribution only for small 
samples. (Student was the pen name of William Gosset, who devised the test 
for small samples; the test was not so named because of its use by students 
of statistics.)

Below are tabulated values from the t-distribution for a number of different 
sample sizes. The values shown replace the numerical factors in the confi-
dence limits statements above, obtained from the normal distribution. The 
latter factors are repeated in the bottom line of the tabulation for ease of 
comparison. The tendency of the t-distribution values to approach the normal 
distribution values can be appreciated.

Sample Size (n) 95%  
Confidence

98%  
Confidence

99%  
Confidence

99.9%  
Confidence

5 2.57 3.37 4.03 6.87

10 2.23 2.76 3.17 4.59

20 2.09 2.53 2.85 3.85

30 2.04 2.46 2.75 3.65

60 2.00 2.39 2.62 3.46

Normal Distribution 1.96 2.33 2.58 3.29

It can also be seen that smaller samples result in a widening of the confidence 
limits. This widening is additional to the widening that arises as a result of the 
smaller value of n in the estimation of the population standard deviation.



Comparisons
Reason respects differences, and imagination the similitudes of things.

—Percy Bysshe Shelley

We are now in a position to consider situations in which comparisons are made between the features 

of samples and populations, in order to decide whether they are different or could simply represent 

likely variations of the same underlying data.

IV
P A R T  



Levels of 
Significance
What Odds Are You Giving?

When we obtain two or more samples, we may expect them to be from the 
same population. Thus we may sample goods produced on two production lines 
in the same factory, or we could be comparing the same product from two 
different suppliers. If we find samples to be from the same population, we can 
pool them to create a larger sample and summarize the data more succinctly. 
If we find the samples to be from different populations, we are in a position  
to draw important conclusions. We might change our supplier, for example.

In making comparisons, statisticians propose at the outset that there is a differ-
ence or there is not a difference. These proposals are referred to as hypotheses. 
Hypothesis testing describes the process involved. The correctness of a hypoth-
esis cannot be determined with certainty. There is always a degree of uncertainty, 
which is expressed in terms of a level of significance.

The null hypothesis, H0, is the hypothesis whose correctness is being tested.  
H1 is the alternative hypothesis, which is accepted if the null hypothesis cannot 
be accepted.

Thus we might have a null hypothesis that the average income in Midtown is no 
different from that in the rest of the county. The alternative hypothesis is that 
the average income in Midtown is different from that in the rest of the county. 
Acceptance of the null hypothesis would be expressed by stating that the aver-
age income in Midtown is found to be not significantly different from that in the 
rest of the county.  A level of significance is attached to the conclusion.  A level  
of 5%, say, means there is a 1 in 20 chance of the conclusion being wrong.

8
C H A P T E R 
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There is a similarity between the significance level and the confidence limit 
described in the final section of the preceding chapter. There we used per-
centages close to 100% to express the level of confidence in our conclusions. 
Here, our significance levels are close to zero, expressing the probability that 
our finding of a difference is likely to be wrong. You will see later that the 
similarity extends to the manner in which the confidence limits and the sig-
nificance levels are calculated.

The null hypothesis is usually worded in such a way that if it is accepted, then 
there is no change to the situation, the use of the word “null” implying this 
approach. If the null hypothesis in the Midtown example had been accepted, 
we would have discovered nothing special about Midtown and the situation 
would have been in effect unchanged.

This may seem a rather pedantic convention. After all, why not have adopted 
a null hypothesis stating that the average income in Midtown is different from 
that in the rest of the county? The calculation procedure would remain the 
same and the result obtained would be identical. However, as shall be seen in 
Chapter 12, the convention does result in improved clarity when we consider 
the errors that are possible within our degrees of uncertainty.

Tests may be stated to be one-tailed or two-tailed. The test just described is a 
two-tailed test in that we are asking whether Midtown incomes differ from 
the others, either by being less or greater than those in the rest of the county. 
If we test to see whether the Midtown incomes are different in being lower 
than the rest, or test to see whether they are different in being greater, we 
would have in each case a one-tailed test. The tail referred to is the tail of the 
distribution extending away from the mean—i.e., to larger values of standard 
deviation from the mean and therefore more unlikely to be observed.

A level of greater than 5% is generally never considered to be significant, as 
the probability of it being simply an odd result is too great. For many purposes, 
even 5% is not considered good enough and a level of 1% may be required. 
The probability of the result being wrong is then 1 in 100, and the result may 
be termed very significant. Of course, for life-or-death situations in medical 
activities or health and safety applications, even this level may be inadequate 
and significance levels of 0.1% or better may be called for.

When results are quoted with their levels of significance, the number of data 
in the sample or samples may also be quoted. There may also be references 
to degrees of freedom, which were explained in Chapter 7.

In the following four chapters, I will describe various ways of testing hypoth-
eses. The emphasis will be on giving you an understanding of what the stat-
istician is saying and the language she is using. I will not get involved in any 
complicated mathematics but will outline and illustrate the steps involved. In 
any case, the mathematical processing is generally carried out by calculator or 
computer programs rather than by hand. When reference is made to a small 
or a large sample, the dividing line is around 30 data.



General 
Procedure for 
Comparisons
Eight Easy Steps from Null to Significance

After you decide what is to be compared with what, you should clearly define 
the null hypothesis. It is very easy to later become confused between the null 
hypothesis and the alternative hypothesis.

The next step is to choose the acceptable level of statistical significance. It is 
important to fix and declare this significance level at the outset so that your 
choice will not be influenced by the result you obtain.

Next choose the statistical test you will use. The following three chapters will 
describe the appropriateness of various tests in relation to the available data 
and the conclusions sought. Each statistical test employs published tables from 
which the levels of significance can be obtained. The tables are produced from 
calculations that are often complex. In practice, the availability of computer 
programs has removed much of the need to refer to tables; the complete 
sequence of calculation, from the raw data to the statement of the significance 
level, is hidden from view. Nevertheless, it is wise to appreciate the steps that 
are followed within the procedure.

9
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The number of available tests is very large, and new ones are being developed. 
It would be impossible to include them all. Many of the well-established tests 
are in common use, and I will describe them.

Statistical tests vary in their power, the power of a test being a measure of the 
likelihood of obtaining a result that is not spurious. Clearly, the test should 
be chosen in order to maximize the power. Tests that make no assumptions 
about the distribution that the data fits are less powerful than those that 
assume a particular distribution.

Every collection of data is unique; it would clearly be impossible to provide a 
table of values for each situation. The data therefore is processed to produce 
a standard value of what is termed a test statistic. In effect, data is scaled to 
allow a direct comparison with the standard distribution. The idea of scaling 
the data in order to compare it with a standard distribution was introduced 
in the section on standard normal distribution in Chapter 7.

The test statistic is referred to the appropriate table together with the num-
ber of degrees of freedom, or the number or numbers of data involved in the 
calculation of the statistic. In some situations you need to distinguish between 
a one-tailed test and a two-tailed test in referring to the table.

In summary, the procedure for comparing samples of data and their statistical 
properties is as follows:

1. Decide on the comparison to be made.

2. State the null hypothesis.

3. Decide on the required level of significance.

4. Choose the statistical test.

5. Calculate the test statistic and the degrees of freedom.

6. Note, if necessary, whether to use one-tailed or  
two-tailed values.

7. Refer to the tables.

8. Read off the level of significance.

So far we have dealt with descriptive data before numerical data, progress-
ing from the simpler to the more complex. Now, however, we will consider 
numerical data first. This is because comparisons of numerical data have pro-
cedures that are usually better known. Furthermore, some descriptive data 
can be recast in numerical form and dealt with in ways that I will have already 
described.



Comparisons 
with Numerical 
Data
Are Today’s Chocolate Bars Smaller Than 
Yesterday’s?

Once a numerical sample or population has been characterized in a quantifi-
able way, as shown in Chapter 7, it can be compared with others to seek dif-
ferences or similarities. This chapter explains what can be learned from single 
values, pairs of values, pairs of samples, and sets of samples. In each case, the 
null hypothesis, that no difference is evidenced, is set up; and, by calculating the 
appropriate test statistic, it is established whether the null hypothesis should 
be accepted or not.

Single Value
The null hypothesis is that a single value could have come from a given popula-
tion. An example might be to investigate whether a bar of chocolate weighing 
121g could have come from a production line producing bars with a mean 
weight of 120g and a standard deviation of 0.5g. The situation would be con-
sidered to involve a normal distribution of chocolate bar weights.

10
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We have already seen that the area under the curve of the normal distribu-
tion represents the probability of occurrence of the values within the bounds 
of the area. If we are interested in a 5% level of significance, say, we would be 
asking whether or not a value as large as 121g would be found within the 
5% tail of the normal distribution which has a mean of 120.0g and a standard 
deviation of 0.5g.

The difference between 121g and 120g is scaled to fit the standard normal 
distribution by calculating the so-called Z-score, where

Z = (Single Value – Population Mean)/(Standard Deviation)

 = (121–120)/ 0.5

 = 2.0 .

This gives the amount the value being investigated differs from the population 
mean, in units of standard deviations. Referring to Figure 7-9, the probability 
of a value being at least 2.0 standard deviations from the mean is 2%. (Read off  
A = 2.0, B = infinity, which gives 2%.) Complete tables of the normal distribu-
tion give the result more accurately as 0.0228 (2.28%). The value is below the 
5% level of significance, and so we conclude that the null hypothesis is incorrect 
and it is unlikely that the chocolate bar came from the production line. Put 
another way, there is only a 2.28% chance of our being wrong if we say that 
the chocolate bar did not come from the production line.

The example is a one-tailed test, because we are quoting the probability of  
a value as high as 121g being observed. In a two-tailed test, we would be 
inquiring as to the probability of a value being 1g distant from the mean, either 
above or below. We would thus work with a 2.5% probability in the upper 
tail and a 2.5% probability in the lower tail to fix the limits corresponding to 
a 5% probability of the value not being likely to have been selected from the 
population.

The relation between probability of occurrence and departure from the mean 
value is shown as follows for the commonly used levels of significance and for 
one-tailed and two-tailed tests:

Significance 5% 2% 1% 0.1%

One Tail 1.65 2.05 2.33 3.09

Two Tail 1.96 2.33 2.58 3.29

Use of these preferred values of significance level avoids the need to consult 
the full table of values for the normal distribution. It is useful to note that the 
values for two-tailed tests are the same values that we used in setting up con-
fidence limits in Chapter 7. This is not too surprising, because, for example, a 
95% probability that a value is within a symmetrical central band is equivalent 
to a 2.5% probability of it being above the band and a 2.5% of it being below.
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Mean of a Sample
The null hypothesis is that a sample mean value could have come from a given 
population. An example, continuing with our chocolate bars, would be that a 
production line has been serviced and, after servicing, a sample of 100 bars 
is found to have a mean of 119.9g, compared with a previously determined 
population mean of 120.0g. To establish whether the production line is now 
operating satisfactorily, we set up the null hypothesis that the population from 
which the sample was drawn has a mean of 120.0g. We suppose that the 
sample had the expected standard deviation of 0.5g, as before.

The procedure is similar to that in the previous example, a Z-score being 
obtained and referred to tables of the normal distribution. However, because 
our sample mean is more representative than the single value was in the previous 
section, we reduce the standard deviation of the sample to get the standard 
deviation of the mean. This is done by dividing the variance of the sample by 
the number of data values in the sample and then taking the square root. This 
gives us the standard deviation of the mean, which is usually called the standard 
error of the mean. Put another way, we have divided the standard deviation of 
the sample by the square root of the number of data values to get the standard 
deviation of the mean. Thus, the standard deviation of the mean is 0.5g divided 
by the square root of 100—i.e., 0.5/10 = 0.05g. This has the effect of reducing 
the uncertainty of the result. This reduction in standard deviation was used in 
a similar way in calculating confidence limits in Chapter 7.

The Z-score is

           (119.9 – 120.0)/0.05 = – 2.0.

This value exceeds the required value for 5% significance, almost reaching 
the 2% level, as can be seen from the values shown in the previous section.  
We conclude that the null hypothesis should be rejected, there being evidence 
that the production line is not operating as required. (The negative value 
obtained for the Z-score simply shows that the value being tested is below 
the population mean; you will recall that the mean of a standard normal 
distribution is located at zero.)

It is better to use a large sample because of the reducing effect on the Z-score. 
However, because the reduction is by the square root of the sample size, a 
situation of diminishing returns sets in. With a sample size of 16, the Z-score 
is reduced by a factor of 4 compared with the Z-score for a single value. If 
we wish to reduce it by a factor of 8, we need a sample of size 64. The effort 
and cost of obtaining samples thus rises rapidly as we attempt to reduce the 
uncertainty in the results.
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If the size of the sample is small, a slightly different procedure is adopted. The 
Z-score is modified slightly but then referred not to tables of the normal 
distribution, but to tables of the t-distribution (Chapter 7). The t-distribution 
approaches the normal distribution, giving the same results for large samples.

Difference between Variances
The null hypothesis is that two samples having different variances could have 
been drawn from the same population. This amounts to examining whether 
the two samples differ significantly, because if they could not have come from 
the same population, they must have been drawn from different populations.

The ratio of the two variances, F, is calculated by dividing the larger variance, 
s1

2
, by the smaller, s2

2, to give a value greater than 1,

F = s1
2/s2

2  .

If n1 and n2 are the numbers of data in the two samples, the degrees of freedom 
are n1 – 1 and n2 – 1. The value of F and the degrees of freedom are referred 
to tables of Snedecor’s F-values. The tables are fairly extensive because of the 
need to cater to each level of significance and the number of data in each of 
the two samples. Extracts from the tables are shown in the “Multiple Samples” 
section and in Chapter 16, where further uses of the F-test are illustrated.

If the two variances are not significantly different, they may be pooled and the 
weighted mean value used as a more reliable estimate of the population vari-
ance. Thus, as shown in Chapter 7, the pooled estimated population variance 
is given by

s 2 = {(n1– 1) s1
2  + ( n2– 1) s2

2 }/(n1 + n2 – 2) .

Difference between Means
The null hypothesis is that two samples having different means could have 
been drawn from the same population. Notice that the previous test, the vari-
ance ratio test, should be first carried out. If the F-test shows the two samples 
to be significantly different, it might be pointless to ask if the means show the 
samples to be different. Of course, the F-test is subject to a degree of unreli-
ability, so it becomes a matter of judgment how to proceed.

On the assumption that we continue to examine the two mean values, a 
Z-score is calculated, expressing the difference between the means in terms 
of the number of standard deviations. This is similar to what we did in the 
“Mean of a Sample” section when we compared the mean of a single sample 
with a population mean. However, we now have two samples, each of which is 
an estimate of the supposed underlying population. We will use the difference 
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between the two means, as we did before, but the required standard deviation 
now refers to a new distribution—that is, the distribution of the differences 
between two samples. The standard deviation to be used here is the standard 
deviation of the difference. Each of the mean values has its associated vari-
ance, expressing its uncertainty. So the sum of the two variances expresses 
the uncertainty in the difference between the means.

At this stage an example will make clear how to proceed. Assume we have 
details of sales of a particular product by two sales staff over a period of time, 
and we wish to make a comparison:

Staff Number of Days Mean Sales per Day Standard Deviation

n xm s

1 30 16 6

2 35 12 5

The variance of the difference of the means is s 2 / n1 + s 2 / n2 where s 2 is the 
population variance, which has to be estimated as we do not know its value. The 
estimate of the population variance, using the sample standard deviations, is

s 2 = {(n1– 1) s1
2  + ( n2– 1) s2

2 }/(n1 + n2 – 2) .

This is the equation you met in Chapter 7 and in the preceding section for 
pooling two samples to estimate the population variance. Using the values in 
the table above gives 30.06, so the variance of the difference of the means is 
30.06/30 + 30.06/35—that is, 1.86. The standard deviation of the distribution 
of the difference of the means is the square root of this, which is 1.36.

The Z-score, the difference between the two means in terms of standard devi-
ations, is therefore (16 – 12)/1.36, which is 2.94. It can be seen from the values 
for the normal distribution shown in the “Single Value”section of this chap-
ter that this is significant at the 1% level, so we would conclude that the null 
hypothesis is rejected and the two members of staff differ in performance.

Notice that use is made here of the additive nature of variance: we cannot 
simply add the two values of standard deviation to get the standard deviation 
of the difference between the means.
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Means of Paired Data
Paired data frequently arise in before-and-after situations. Thus we could 
have test results for a group of students before and after a week of revision. 
For example:

Student A B C D E Mean Variance

Before 20 60 40 50 30 40

After 30 55 50 65 50 50

Increase 10 –5 10 15 20 10 87.5

If there had been no effect of the revision sessions, we would expect these 
increases to be small, with an average close to zero. We can therefore ask 
whether this distribution of increases differs significantly from the values that 
might be obtained from a population with a mean value of zero. Our null 
hypothesis is therefore that the sample of increases could have been drawn 
from a population of values with a mean of zero.

The calculation can now follow a procedure similar to that used in the pre-
vious section, where we compared two sample means. The variance of the 
difference of the means reduces to the variance of the mean of the increases, 
and the estimate of the population variance reduces to the variance of the 
increases.

The values from the table above give the following:

Estimated population variance     = 87.5

Variance of difference of means         = (87.5)/5  = 17.5

Standard deviation of difference of means  = 17.5        = 4.18

Z-score      =  (10 – 0)/4.18 = 2.39

The sample is small; so, rather than quote a Z-score, the result should be 
referred to as a value of Student’s-t, and tables of t-values should then be used 
to determine the level of significance. Samples are commonly small in paired 
data because exact pairing becomes more difficult when the required sample 
size gets larger. In this example, the t-value of 2.39 is somewhat short of  
the value required to indicate a 5% level of significance for a sample size of 5. 
(See the selection of t-values in Chapter 7.) It would be concluded therefore 
that the null hypothesis is accepted and there is insufficient evidence to show 
that the revision sessions were of any benefit.



Better Business Decisions from Data 99

Multiple Samples
If more than two samples need to be compared, it would be quite possible to 
compare them in pairs using the methods described above. This, however, would 
be an unsatisfactory procedure for the following reason. If there were three 
samples, A, B, and C, there would be three pairs to compare: AB, AC, and BC. If 
we are testing at the 5% level, we have a 1 in 20 chance of being wrong in each 
of these comparisons. We have a chance of approximately 3 in 20 of at least one 
of the results being wrong. The situation gets worse rapidly as we increase the 
number of samples. Four samples produce six pairs, and five samples produce 
ten pairs, rendering the probability of being wrong unacceptably high.

A technique called variance analysis (ANOVA) is used in such situations, 
and it is here that the important role that variance plays in statistical rou-
tines becomes apparent. Variance, in spite of having often strange units, has 
the useful property of being additive. This we have encountered previously 
where, in order to calculate a mean standard deviation, we first obtained 
the variances from each standard deviation, then averaged the variances and 
obtained the mean standard deviation by taking the square root of the mean 
variance. You saw, similarly, in the “Difference between Means” section, that 
to get the variance of the difference between two values, we added the two 
individual variances.

If we have a number of samples, there will be variation of the data within each 
sample. In addition, the samples will differ from each other. In order to quantify 
the difference between the samples, it is necessary to separate the variation 
within the samples and the variation between the samples. The analysis of 
variance allows this to be done.

From the variances of all the samples, we can obtain a pooled variance. This 
gives a measure of the variation within the samples. In effect, we are supposing, 
temporarily, that the samples are in reality drawn from the same population, 
so each sample variance is an estimate of the population variance. The best 
estimate of the population variance is then obtained by pooling the several 
estimates. This is the measure of the within-sample variance.

We can then temporarily remove the variation within each sample by replac-
ing each datum with its sample mean and calculating the variance of the total 
data. This gives a measure of the variation between the samples. In effect, 
we are asking what the best estimate of the population variance would be 
if each sample consisted of a set of identical values having the original mean 
but zero variance.

If all the samples could have been drawn from the same population, it would 
be expected that the variation within the samples would be similar to the 
variation between the samples. Thus the ratio of the within-sample variance 
to the between-sample variance indicates the extent to which the samples 
could have a common source. An example will make this clear.
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Five soccer players have scored goals, as follows, in a number of matches. The 
number of matches played is not necessarily the same for each player. The null 
hypothesis is that the five samples could have been drawn from the same popu-
lation. In other words, there is no evidence that the performance of the five 
players differs significantly:

Player A B C D E

Goals 3 3 0 1 4

0 2 3 3 2

3 3 0 1 2

4 2 4 4

0 1 3

Mean 2 3 1 2 3

Variance 3 0.67 2 2 1

Overall Mean = 2.18 Pooled Variance = 1.65

The pooled variance, following the pooling procedure explained in Chapter 7, 
is 1.65. This is the within-sample variance. The degrees of freedom associated 
with this variance are obtained by adding the degrees of freedom for each 
sample: that is, one less than the number of data. So, (2+3+4+4+4) = 17 is the 
number of degrees of freedom.

To get the between-sample variance, each datum is replaced by its sample mean:

Goals 2 3 1 2 3

2 3 1 2 3

2 3 1 2 3

3 1 2 3

1 2 3

Mean 2 3 1 2 3

Variance 0 0 0 0 0

Overall Mean = 2.18 Variance = 3.32

The variance of these values about the overall mean, 3.32, is the between- 
sample variance. The degrees of freedom associated with this variance are one 
less than the number of samples—viz., 4. Note that the sum of the degrees 
of freedom for the within-sample variance and the between-sample variance, 
21—i.e., 17 + 4 —is equal to the total degrees of freedom for the total of 22 
data values—i.e., 22 – 1 = 21.
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The ratio of the two variances (3.32/1.65 = 2.01), together with their degrees 
of freedom, are referred to the table of F-values described in the section 
“Differences between Variances.” An extract from the tables follows:

Significance Level

5%

Degrees of Freedom of the Larger Variance

3 4 5

Degrees of Freedom of 
the Smaller Variance

15 3.29 3.06 2.9

16 3.24 3.01 2.85

17 3.2 2.96 2.81

18 3.16 2.93 2.77

In this example, the variance ratio, 2.01, is not sufficiently large to indicate 
a significant difference between the performances of the players. The null 
hypothesis is accepted.

The analysis of variance used in this way is referred to as a one-way analysis of 
variance, in that the variation between groups of samples is examined, each 
sample being of a similar type and possibly drawn from the same population. 
In Chapter 16, you will see that variance analysis can be applied to sets of 
samples that differ in some way.

MANAGING THE MANAGER

Premier Pressings is a company manufacturing steel pressings for engineering firms 
making automobiles, washing machines, gas boilers, and similar items. The company 
has units located in five different cities, each serving local needs.

The chief executive, George Robinson, was concerned that one of his units, Shempton, 
had been showing low profits over the past six months in comparison with the four other 
units. He had discussed his concerns with the manager of the Shempton unit, Tom 
Greeves, to establish what the problem was. The meeting was less than satisfactory: 
Tom was unable to offer any reasonable explanation for his poor results and claimed 
that it was a statistical quirk and that no doubt in subsequent months the effect would 
balance out.

Unconvinced, George decided on further investigation. He called on a senior 
draftsman from the Design Office who had some knowledge of statistics to have a 
look at the figures.

The draughtsman, Arnold Mason, could see immediately that the average profit over 
the six-month period was much lower that the profits for any of the other four units, 
although the variation, month to month, was quite large for all the units. He decided to 
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first check on the consistency or otherwise of the results from the four other units. He 
listed the six profit values for the four units, 24 data in total, and carried out a one-way 
variance analysis. This gave him a value of the within-sample variance and a value of 
the between-sample variance. He calculated the variance ratio, F. Reference to tables of 
F-values showed that the result was not significant, so the four units could be considered 
to be producing results with similar amount of spread. He therefore calculated the mean 
and variance for the 24 values of profit.

The next step was to see if the Shempton results were significantly different from the 
combined 24 values. The mean and variance of the Shempton results were calculated. 
A comparison of the two variances gave an F-value that was not significant. However, 
the comparison of the two mean values showed a significant difference at the 5% level. 
This indicated that there would be a 1 in 20 chance of being wrong if it were maintained 
that the Shempton results were inferior to the others.

The CEO, armed with the results, summoned Tom to a further meeting and pointed 
out that there was good evidence that the Shempton results were not satisfactory. It 
was accepted that the evidence was not overwhelming; and, in view of a degree of 
uncertainty, Tom was told that he would be given a further six months to improve his 
profits. The exercise would be repeated in six months’ time, and Tom’s future would then 
be considered.
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Comparisons 
with Descriptive 
Data
Is Your Staff Female/Male Ratio OK?

Chapter 6 explained that descriptive data can be rendered numerical by 
expressing the numbers of items in various categories as proportions—thus 
enabling further analysis to be carried out on the data. In this chapter, a single 
proportion will be compared with a population, and two sample proportions 
will be compared. If the data is ordinal—that is to say, it can be listed in logical 
order—then ranking tests, which will be introduced, can be applied to achieve 
comparisons between pairs of ranks.

There is a particular advantage in having large samples of descriptive data, 
because several of the procedures used then allow the data to be dealt with 
as normally distributed data. 

Single Proportion
A sample consisting of yes/no data will provide an example of dealing with a 
proportion. Suppose we know from previous investigations that the propor-
tion of inhabitants of Newtown who were born in Newtown is 0.7. We can 
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use this information to decide whether a sample of size 100, say, obtained in 
one area of the town is representative of the town or whether the sample 
shows a significant difference.

The null hypothesis is that the sample proportion, 0.8 say, is not significantly 
different from the overall proportion of 0.7 for the town. Our sample of 100 
consists of 80 who were born in Newtown, whereas we would have expected 
70 on the basis of the known results for the whole town. The procedure fol-
lows a pattern similar to that used in the first section of Chapter 10, where 
we asked whether a single value was likely to have been drawn from a popula-
tion of known mean value. A Z-score was calculated by dividing the difference 
between the single observed value and the population mean by the square 
root of the variance. This gave us a measure of the difference in units of stan-
dard deviations.

Proportion is a binary measure: each person in our sample was either born 
in Newtown or not. So the proper distribution to use is the binomial, which 
we will look at in a moment. However, if the sample is large and the popula-
tion proportion is not excessively large or small, the normal distribution can 
be assumed to be relevant. The variance of binomially distributed data is  
np(1–p), where p is the population proportion and n is the number of data in 
the sample. The Z-score is therefore

Z (Single Value Population Mean) (Standard Deviation)
(80

= /-
= -770) (100 0.7 0.3)

2.18.
/ ´ ´

=

This value shows that our sample differs significantly from the population at 
the 5% level. (See the selection of values for the normal distribution in the 
first section of Chapter 10.)

The binomial distribution differs from the normal distribution when the 
sample size is small, but unfortunately tables of the binomial distribution are 
not convenient to use. The values of probability vary with both the number 
of data in the sample and the population proportion, so there has to be a 
separate table for each size of sample and each value of population propor-
tion. Furthermore, the values listed are cumulative probabilities. Figure 11-1 
gives a more easily appreciated view of the binomial distribution by providing 
a selection of plotted values for a number of sample sizes and different pro-
portions of the property of interest in the population. When the population 
proportion is small, the distribution is skewed, but it becomes symmetrical 
when the proportion is 0.5. As the sample size increases, the distribution 
approaches the normal distribution, as has already been stated.
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Suppose we have a firm with just 10 employees, only two of which are female. 
Does this provide evidence that the firm is discriminating against female 
employees? The expected number of females assuming no discrimination is 
5, so the null hypothesis is that a sample of 10 employees containing 2 or 
fewer females could have been drawn from a population having a proportion 
of females of 0.5.

Entering the values from our example in tables of the binomial distribution 
gives a probability of occurrence of 0.0547—i.e., just over 5%. We would 
have to conclude that there was no evidence at the 5% level of discrimination. 
Had there been just one female employee, the probability would be lower—
0.0107, just over 1%— and we would consider that there was evidence of 
discrimination. With zero female employees, the probability would be even 
lower, but we would have to be careful. It would be quite likely that there 
was an underlying reason why the work was not suitable for or attractive to 
female employees.

In Figure 11-1(b), you can see these results diagrammatically. The bottom  
distribution is appropriate for a sample size of 10 and a population proportion 
of 0.5. The requirement for 1% significance is shown as zero occurrences and 
the requirement for 5% significance is shown as less than 2—i.e., 0 or 1. 
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Figure 11-1. The binomial distribution showing the probability of a number of specified 
events in a sample when the proportion in the population is p, for a range of p values and for 
a sample size of (a) 5, (b) 10, (c) 20, and (d) 30
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Figure 11-1. (continued)
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Figure 11-1. (continued)
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Difference between Proportions
It may be that we have two samples and we wish to examine the difference 
between them. The null hypothesis is that the two samples could have been 
drawn from the same population. If the samples are large we can again use the 
normal distribution and deal with the data as for numerical data described in 
the “Difference between Means” section of Chapter 10. For samples of equal 
size, the variances of the two samples are added, and the Z-score is the dif-
ference between the numbers of occurrences in each sample divided by the 
square root of the combined variance. If the samples are of unequal size, the 
difference has to be the difference between the two proportions and there 
has to be an appropriate adjustment of the expression for the combined vari-
ance. Thus the Z-score takes a more complicated appearance,

Z p p p p n n= - - +( ) ( (1 )(1 1 )),1 2 1 2/ / /

where p1 and p2 are the two proportions in the samples, n1 and n2 are the two 
sample sizes, and p is the population proportion. If the population proportion 
is not known, a weighted mean of the two sample proportions is used.

Ranks
Ordinal data, which is descriptive data that can be placed in a logical order, can 
be compared by ranking tests. These are nonparametric—meaning that no 
particular distribution is assumed.

Suppose we have two categories that we wish to compare, and our sample 
data consists of an overall ranking of representatives of both categories. For 
example, we could have a list of singers ranked in order of preference by a 
panel of voters, and we wish to see if there is a significant preference for male 
or female singers. The list might look like this:

M F M M M F M F F F F F M.

An appropriate test would be the Mann-Whitney U-test. An equivalent test, 
with a slight difference, is the Wilcoxon rank-sum test.

To take an example which we may follow through in greater detail, consider 
two teams of runners competing in a race: five runners from the A team and 
five runners from the B team. Our data consists of the order in which the 
runners finish, and our null hypothesis is that there is no significant difference 
between the two teams. The runners in order of finishing are

A A B B A B B A A B B B A.
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Each data item is given its rank value and the values are totaled for each group, 
as follows”

A Team ranks 1, 2, 5, 8, 9, 13            Number, nA = 6     Total, RA = 38

B Team ranks 3, 4, 6, 7, 10, 11, 12     Number, nB = 7     Total, RB = 53

Two U values are calculated,

UA = nAnB + nA(nA+1)/2 – RA   and

UB = nAnB + nB(nB+1)/2 – RB

The statistic U is the smaller of UA and UB and is referred to the tables of criti-
cal values for the Mann-Whitney U-test. Use of the values above gives UA = 25 
and UB = 17, so U = 17. The value needs to be equal to or less than the tabu-
lated critical value to indicate a difference between the two sets, A and B, at the 
indicated significance level. Below is a selection of values from the tables: 

One Tail Two Tail

nA nB 5% 1% 5% 1%

5 5 4 1 2 0

5 10 11 6 8 4

6 6 7 3 5 2

6 7 8 4 6 3

6 8 10 6 8 4

6 10 14 8 11 6

7 7 11 6 8 4

7 10 17 11 14 9

A two-tail test is appropriate because we are testing for no difference, rather 
than a difference in favor of A or B. It can be seen that our U value is too large 
to indicate any significant difference between the two sets of runners.

For large values of n, the normal distribution can be used. The appropriate 
mean value is nAnB/2, and the variance is nAnB(nA+nB+1)/12. Thus a Z-score can 
be calculated from the value of U and referred to tables of the normal distri-
bution as shown in the first section of Chapter 10.

If the Wilcoxon rank-sum test is used, the rank sum from the smaller group, 
RA, in this example 38, is the statistic to be referred to tables of critical values 
for the Wilcoxon rank-sum test to obtain the significance level. If the groups 
are equal in size, the smaller total is used. If the samples are large, the normal 
distribution can again be used. The appropriate mean is nAnB/2+nB(nB+1)/2 and 
the variance is nAnB(nA+nB+1)/12.
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The Kruskal-Wallis test is an extension of the Mann-Whitney test to cater to 
three or more samples. The test statistic has a complicated formula describing 
essentially the variance of the ranks. It is referred to tables of the chi-squared 
distribution, which was described in Chapter 7, to obtain the significance level. 
However, if the groups are too small (less than about 5), the statistic departs 
from the chi-squared distribution.

Ranks of Paired Data
If the two samples to be compared consist of paired values, the Wilcoxon 
matched-pairs rank-sum test can be used. Suppose we wish to compare a stu-
dent’s position in class in a range of subjects for two consecutive years. We 
are investigating whether there is an overall improvement in Year 2 compared 
with Year 1. The positions in class are as follows:

Subject English Math French German Art Physics Biology History

Year 1 3 4 6 1 1 8 6 2

Year 2 1 1 2 2 3 3 3 1

Improvement         
Year 1 – Year 2

2 3 4 –1 –2 5 3 1

Rank (disregarding       
+ or –)

3.5 5.5 7 1.5 3.5 8 5.5 1.5

Sum of + ranks = 3.5+5.5+7+8+5.5+1.5 = 31

Sum of – ranks = 1.5+3.5 = 5

(Any zero differences are omitted.)

The sum of the negative ranks, 5 in this example, is the statistic W, which must 
be equal to or less than the value in the tables of the Wilcoxon matched-pairs 
test. The number of pairs, n, is entered as 8. A small extract from the tables 
is shown below:

Number of Pairs n One Tail Two Tail

5% 1% 5% 1%

5 0 - - -

6 2 - 0 -

7 3 0 2 -

8 5 1 3 0

9 8 3 5 1

10 10 5 8 3
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The one-tail test is relevant because we are testing for a significant improve-
ment rather than a significant difference, and the value of 5 indicates a significant 
improvement at the 5% level.

Duplicate Ranks
If we have two separate rankings of the same items, there are a number of 
ranking methods that can be used. One of these employs the Spearman rank 
correlation coefficient, r (Greek letter rho) or rs. I will illustrate the method by 
imagining seven different restaurants which are compared by two judges. We 
wish to know whether there is significant difference between the opinions of 
the two judges. The null hypothesis is that the two orderings are related and 
could have been drawn from the same population. The judges would therefore 
have similar opinions of the restaurants. The orderings might appear thus:

Restaurant Judge 1 Judge 2 Difference

Rank Rank d d2

A 4 3 1 1

B 2 2 0 0

C 3 5 2 4

D 1 1 0 0

E 5 7 2 4

F 6 4 2 4

G 7 6 1 1

Total 14

If two or more ranks were equal within a judge’s ordering, the mean value, 
allowing fractions, would be substituted for each; but too many equal ranks 
render the analysis inappropriate.

The differences between the ranks from the two judges are squared and from 
the sum of the squares the correlation coefficient, r, is calculated. The value 
of r ranges between +1 and –1, with +1 indicating perfect agreement between 
the two rankings, and –1 indicating exactly opposite rankings. 

The coefficient is calculated by

r = 1 – 6 x (sum of d2)/(n(n2 –1)) ,

where n is the number of items that are ranked. In our example,

r = 1 – 6 x 14/(7(49 –1)) = 0.75 .
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This value is referred to published tables of r to obtain the significance level. 
To give an idea of the required levels of r, the following table shows the values 
for a selection of n values and two significance levels:

Number of items n One Tail Two Tail

5% 1% 5% 1%

5 0.90 1.00 1.00 0.00

6 0.83 0.94 0.89 1.00

7 0.71 0.89 0.79 0.93

10 0.56 0.75 0.65 0.79

15 0.45 0.60 0.52 0.65

20 0.38 0.52 0.45 0.57

30 0.31 0.43 0.36 0.47

40 0.26 0.37 0.31 0.41

Our value of 0.75 can be seen to exceed the 5% significance level for a one-tail 
test but not for a two-tail test. In this example, a one-tail test is appropriate 
because we are investigating whether our two judges have ranked the restau-
rants in the same order. The second tail of the distribution is concerned with 
rankings that correlate but are in the reverse order to each other. We con-
clude, therefore, that there is evidence, at the 5% level, of agreement between 
the two rankings.

If n is greater than about 40, a Z-score can be calculated (as shown in  
Chapter 10) and tables of the normal distribution used to obtain the level of 
significance. The appropriate normal distribution has a mean of zero and a 
variance of 1/(n – 1). 

There are several other rank correlation coefficients, including the Kendall 
rank correlation coefficient, t (Greek letter tau), which are calculated differ-
ently but which yield correlation coefficients that are interpreted the same as 
Spearman’s and to which can be attributed levels of significance.

The word correlation in a strict sense means a linear relationship between two 
variables, and these ranking methods are also used to examine relationships. 
Here we have simply used the rank correlation coefficients to compare two 
samples that could be from the same population. In a sense, there could be 
considered to be a relationship between the two rankings: we could plot a 
graph of the rankings of Judge 1 against those of Judge 2. Perfect agreement 
between the two rankings would give a straight line with a rising slope of unity. 
If the two judges had given exactly opposite rankings, such a graph would give 
a straight line with a descending slope of unity. In Part V, we shall deal with 
relationships and meet ranking again.



Types of Error
How Wrong Can You Be?

Whenever a significance level is quoted, there is a chance that the stated 
result is incorrect. If the null hypothesis is rejected when, in fact, it is correct, 
the error is referred to as a Type I error. So, if our null hypothesis is that there 
is no significant difference between the mean marks from the boys’ results 
and the girls’ results in the same examination, we may decide that there is a 
difference, at the 5% level, say. If in fact there is no difference, and our result 
is simply due to the random effect embodied in our 1-in-20 chance of being 
wrong, then a Type I error has occurred.

Alternatively, our result may show no significant difference, and we would 
accept the null hypothesis. If we are wrong and there is in reality a difference, 
a Type II error has occurred.

A Type I error is the easiest to recognize because its probability is defined 
when the significance level of the result is stated. In the above example, if we 
conclude, in agreement with the null hypothesis, that there is no significant 
difference (at the 5% level) between the boys and girls, we have a 5% chance 
of making a Type I error. The error would be a false alarm in indicating a  
difference when none existed. The probability of a Type I error occurring is 
denoted by a (Greek letter alpha). A Type II error arises when no significant 
difference is indicated, albeit incorrectly, and is accepted and is therefore a 
missed detection. A false alarm and a missed detection are useful ways of 
thinking of the two kinds of error: the designations I and II do little to suggest 
which is which (Figure 12-1).

12
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An important purpose of hypothesis testing is to reject the null hypothesis 
when it is false. Thus the avoidance of a Type I error is important. A Type II 
error is generally less serious as it leaves the situation open for further inves-
tigation with improved resources. The power of a test is the probability of 
rejecting the null hypothesis when it is false—that is, it is equal to one minus 
the probability of a Type II error. The probability of a Type II error occurring 
is denoted by b (Greek letter beta), and the power of a test is therefore 1–b. 
The power dictates the probability of being able to find a difference if one 
really exists.

Figure 12-1. Type I and Type II errors, which arise when the null hypothesis is accepted 
though incorrect or when it is rejected though correct
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Note that we cannot calculate the probability of making a Type II error  
without additional information, because we have no knowledge of how far 
the true situation is from the situation stated in the null hypothesis. We have 
to set up an alternative hypothesis in a quantitative way. For example, for our 
class of students we could propose that the girls are 3% better than the boys 
on average, and test this as the alternative hypothesis.

If we reduce the chance of making a Type I error by testing at a higher  
significance level, say 1%, then we increase the chance of making a Type II error. 
There is a trade-off between the two. In situations of acceptance sampling 
involving a supplier and a customer, there is a conflict of interest. Suppose 
apples are being supplied, and a sample is examined. The null hypothesis is 
that the sample is not significantly different from the population from which 
it was drawn. If a Type I error occurs, it is to the supplier’s detriment, because 
the apples may be rejected when in fact they are satisfactory. If a Type II error 
occurs, the sample may indicate acceptance of the apples when in fact they are 
unsatisfactory. The customer is thereby disadvantaged. Reducing the  probability  
of a Type I error increases the probability of a Type II error, and vice versa. 
However, by increasing the size of the sample, the probability of both types 
of error can be reduced. There is then a trade-off between the reduction of 
both errors and the cost of sampling.

A simple example will illustrate the two kinds of error. Suppose apples are 
obtained from a supplier whose apples are 10% bad. The customer accepts 
this level of quality in relation to the price paid. Keeping the numbers small to 
simplify the example, we assume that a batch of 10 apples is to be purchased. 
The customer decides to sample 3. If all 3 are satisfactory, the batch of 10 
will be accepted. The null hypothesis is that the batch contains just one bad 
apple—i.e., 10%—in line with the expected proportion. The probability of all 
3 in the sample being satisfactory is, by the multiplication rule, 9/10 x 8/9 x  
7/8 = 0.7. So there is a probability of 0.7 of accepting the null hypothesis and 
accepting the batch of 10. Thus the probability of a Type I error—i.e., the 
probability of rejecting the batch when there is only one unsatisfactory apple 
in it—is 1– 0.7 = 0.3.

We cannot calculate the probability of a Type II error without more informa-
tion. We would need to know or suppose, for example, that the batch of ten 
apples might contain two bad apples. The null hypothesis that there is just 
one bad apple in the batch is now false. The probability of all three apples in 
the sample being satisfactory is 8/10 x 7/9 x 6/8 = 0.47. Thus the probability 
of a Type II error—that is, the probability of the customer accepting the batch 
when the null hypothesis is false—is 0.47.

It is possible in practical situations to set up sampling arrangements to  
equalize the two types of error and thus equalize the supplier’s risk and the 
customer’s risk. In the above example, if the customer were to decide to 
sample 4 apples instead of 3, the probability of a Type I error would increase 
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to 1–(9/10 x 8/9 x 7/8 x 6/7) = 0.4. The probability of a Type II error decreases 
to 8/10 x 7/9 x 6/8 x 5/7 = 0.33. Thus the risks are equalized somewhere 
between 3 and 4 apples being sampled with 4 apples being closer to the 
optimum.

REDUCING THE RISK

Hebdens was a large department store in the center of town, selling a wide selection 
of household goods. The store purchased a range of products from Plushcrocks,  
a manufacturer of ceramic goods such as plates, cups, saucers, and attractive, and 
very popular, ornaments. The goods were delivered to Hebdens in batches of 100. Five 
items from each batch were examined, and if all five items were free from damage or 
defects, the batch was accepted. This procedure was set up on an ad hoc basis at some 
time in the past.

In spite of this arrangement, Hebdens found themselves with a proportion of items that 
had to be scrapped or sold as seconds, and the number seemed to be rising, eating 
into the profits.

Roger Weyland, the quality control manager, decided to make a few calculations.  
It appeared to him that the percentage of unacceptable items had risen to over 5%, yet 
very few batches were ever rejected. At a defect rate of 5%, there would be, on average 
5 defective items in every batch. The probability of the store accepting a batch when 
it contained as many as 6 defective items was 0.73 (73%, the customer’s risk)—yet 
the probability of rejecting a batch when it contained just 5 defective items was 0.23 
(23%, the supplier’s risk). The arrangements were very much in favor of Plushcrocks, 
and Roger clearly needed to introduce a new procedure involving the examination of a 
larger sample of incoming goods.

Further calculations showed that if the number of items inspected was increased to 12, 
the risk of accepting the batch when it contained more than 5% defective items dropped 
to 48%, and the risk of rejecting the batch when it contained less than 5% defective 
items increased to 46%.

Roger took the matter up with Plushcrocks and, by demonstrating the equal risks for 
customer and supplier, he got agreement that 12 items would be inspected in the future 
and, unless all were defect-free, the batch would be rejected. The new procedure would 
not involve Hebdens in any appreciable increase in costs, but Plushcrocks would be 
faced with considerable additional work dealing with rejected batches. Roger realized 
that this was just the start. Armed with his calculations, he could continue to bring further 
pressure on Plushcrocks. Word went round that Plushcrocks had taken advice from a 
consultant statistician, with a view to improving their quality control arrangements! 



Relationships
It is the function of creative men to perceive the relations between 
thoughts, or things, or forms of expression that may seem utterly different, 
and to be able to combine them into some new forms—the power to 
connect the seemingly unconnected.

—William Plomer

We now progress from considering a single variable to considering whether two quite different 

variables are related in some way. In the proper terminology, we are moving from univariate data 

to bivariate data and searching for relationships between two variables. We shall also consider 

relationships between more than two variables.

V
P A R T  



Cause and Effect
Storks and Birth Rates

We human beings seem to have an inbuilt desire to seek out relationships 
between different observed effects, and deduce a cause-and-effect  association. 
I suppose that survival depends to some extent on recognizing  relationships 
and assuming that one effect causes another. As youngsters we learn of  
danger by relating climbing to the risk of falling. Crossing the road without 
looking is related to the possibility of being struck by a vehicle, and so on. 
However, we are inclined to imagine relationships where none exist, and, 
worse still, to imagine that these relationships imply cause and effect. The 
extreme situation is in the area of superstition: a remarkably high percentage 
of the population avoid the number thirteen or carry lucky charms. Astrology, 
which claims that events in our lives are affected by the positions of the  
planets, has a large following.

Of course, relationships can be a first step in indicating the presence of cause 
and effect. Science and technology have advanced, and still advance, by study-
ing relationships. Meteorologists establish relationships between the features 
of air movements and the resulting weather. Chemists establish relationships 
between the constituents of substances and their properties.

In scientific investigations carried out under controlled conditions in a labora-
tory, a cause-and-effect link can be established beyond reasonable doubt. The 
same experiment can be repeated many times. Our chemist can assure us that 
he can predict a specific reaction if he knows the conditions that are being 
maintained. The meteorologist is on less certain ground, having to observe 
the effects without the ability to control any one of them or to remove 
unwanted effects that may play a part. Nevertheless, repeated observations 
can build up confidence that relationships are causally related, particularly if 

13
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theories are available to explain the relationships. Indeed, theories, starting 
from  hypotheses, develop from the confirmation of cause and effect and may 
progress to the status of laws.

The use of control groups is a common way of establishing a causal  relationship, 
typically in trials of new drugs. The drug is administered to one group of 
patients while patients in a second group, the control group, are given  placebos. 
The patients are not made aware of which group they are in. The validity of 
the results, of course, depends on the overall similarity of the two groups, 
which therefore need to be constituted by a randomizing procedure.

In general, unless we have evidence that changing one factor brings about 
a consistent change in another, we cannot assume a cause-and-effect 
 connection. It is not sufficient to establish that the two factors are related. 
An  example of correlation without a causal relationship is that the number of 
births in Copenhagen in the post-WWII period correlated with the number 
of storks nesting on the roofs of buildings. The correlation is consistent with 
the  theory that storks deliver human babies but does not prove it. A more 
 plausible  reason for the correlation, however, is that increase in the city’s 
human  population was causally correlated with an increase in building which 
provided more nesting opportunities for storks. Similar correlations between 
storks and births have been reported from Germany and the Netherlands. 
Some correlations may be due not simply to a third common cause, as in 
these examples, but to a series of interconnected factors.

Sometimes a correlation may arise in a more subtle way. Suppose we suspect 
that a particular medical treatment is triggering an unpleasant side effect in 
patients. This could be based on an observed correlation between the use of 
the treatment and occurrence of the side effect. However, it may be that the 
side effect is not really a side effect but rather is a result of the ailment that 
the treatment is being used to relieve.

Blastland and Dilnot (2007: 163-174) provide a thought-provoking chapter 
describing situations in which correlation has been taken to imply causation. 
An example involves longevity and being overweight. Data from America 
showed overweight people living slightly longer than thin people. However, 
a factor not taken into account was that very ill people tend to be very 
thin. The inclusion of data from this category influences the overall picture,  
suggesting that being overweight leads to a longer life. The authors also point 
out that, because of the many false claims of causality, there arises among some 
of us an unfortunate condemnation of all claims, regardless of their validity.

Some proposed causal relationships are not easy to prove because we have no 
direct control over the effects involved. What do you make of the  following, 
for example? Richard Wiseman (2007: 27-31) describes an  experiment 
involving 40,000 people. Each was asked to rate himself or herself as lucky 
or unlucky. The results were found to correlate with the month of birth.  
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The self-described lucky ones were born in summer months, and the unlucky 
ones in winter months.

The experiment was repeated in the southern hemisphere (New Zealand), 
though with only 2000 subjects, and it was found that the birth rate for lucky 
people peaked in December—summer in the southern hemisphere. It was 
suggested that the temperature at the time of birth might influence the way 
the baby is looked after in its early months, or perhaps the mother’s diet  
varies at different times of the year according to the climate. On the other 
hand, I suspect that many statisticians would like to see the results in greater 
detail before expressing an opinion. They might also want to know if the  
subjects in New Zealand knew of the UK finding before they took part.

Amazing coincidences occur regularly. We read of them in the  newspapers 
every week. It is not too surprising, when we consider the enormous  
number of events that take place in the world and the large number of people 
there are to experience them. We must always remember that a relationship 
between events is not sufficient to demonstrate cause and effect. Correlation 
is a necessary condition for cause and effect, but it is not a sufficient  
condition. Statistics can demonstrate relationships within a specified level of 
reliability. But that is as far as it can go. Statistics alone can never prove a causal 
relationship.



Relationships 
with Numerical 
Data
Straight Lines, Curved Lines, and Wiggly Lines

It is frequently required to compare two or more sets of data to decide 
whether they are related in some way. Some quantities are related because 
we have defined them to be so. Kilometers are related to miles in a precise 
way and the relationship can be expressed as a formula:

kilometers = miles x 1.609.

Dollars are related to pounds sterling by a precise rate of exchange, which 
may vary from day to day and place to place, but which is nevertheless precise 
for a particular transaction. Generally, however, we are dealing with quantities 
which may show some relationship but rarely a precise relationship.

Scientific investigations under closely controlled laboratory conditions proba-
bly come closest to precise relationships, but even here there are small errors 
involved in making measurements which give uncertainties in the established 
relationships. At the other end of the scale we may be looking, for example, 
for a relationship between the way people vote in an election and how their 
parents vote. Here, it is likely that any relationship is uncertain, and the role of 
statistical analysis is to quantify the uncertainties.

14
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When a relationship between two variables is sought, a distinction is made 
between the independent variable and the dependent variable. In Figure 14-1, the 
relationship between sales of ice cream and daily noon temperature is shown 
as a line graph. The temperature is the independent variable and sales is the 
dependent variable, sales depending on the temperature and not the other 
way round. Line graphs are commonly used, as here, to show relationships,  
and there is a convention in plotting them with regard to the choice of the 
quantities to be located on the two axes. The horizontal axis is used for 
the independent variable and the vertical axis for the dependent variable. 
Sometimes it is not clear which is which, both variables being dependent on 
other factors. We may have a choice as to which we treat as the dependent 
variable and which we treat as the independent variable. If we measure the 
temperature and humidity at a location at noon each day and plot temperature 
against humidity, the choice of axes for the two variables will be arbitrary.

Figure 14-1. Graph of ice cream sales at various daily temperatures, illustrating the 
difference between the dependent and independent variables

The relation between two variables is the easiest situation to deal with; the 
difficulties increase rapidly as further variables are introduced. These difficul-
ties are not only in the analysis but also in the decreasing reliability of the 
conclusions that can be derived.

The raw data that have been collected may allow many different  explorations 
of relationship. If people of different ages are sampled, or if products of 
 different categories are involved, the number of possible pairs of variables can 
be many. There is a danger that the investigators, rather than deciding at the  
outset what comparisons are to be examined, will compare everything   
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possible with everything else. The result can be completely unreliable. If, for 
example, a statistical level of 5% is intended to be accepted, it is likely that 1 in 20  
comparisons will spuriously exhibit this level of significance. Since the statistical 
tests to be described can now be rapidly carried out by computer programs, 
the temptation to search for any possible relationship is very great. When the 
tests had previously to be carried out by hand, time simply did not permit a 
far-reaching search for any evidence of relationship, however unlikely.

It does seem that we are being overwhelmed by claimed associations at the 
present time. The media are full of statistical correlations relating to what we 
think, what we do, what we eat and drink, what we should eat and drink, and 
so on. I wonder—cynically, I suppose—whether some manufacturers spon-
sor investigations to seek relationships between their product’s character-
istics and just about anything else that might boost the desirability of their 
product.

In viewing results obtained by others, it is not possible to know how many 
different pairings of variables were or were not examined. If the raw data are 
available, or if details of the sampling are known, suspicions may be raised if 
it appears that the results reported are particularly selective. If the reported 
results refer to cabbages only, yet a range of vegetables was included in the 
sampling, some explanation would be called for.

I need to point out that what I have said above applies strictly to relations 
between pairs of variables. It does not apply to investigations in which the aim 
is to study simultaneously the effect of several different variables. Such inves-
tigations are perfectly proper and will be considered in Chapter 16.

Linear Relationships
If two quantities are related precisely, the relationship can be represented by 
a line graph; and if the line is straight, the relationship is said to be linear. The 
line may pass through the origin of the graph, indicating that the two quantities 
are proportional to each other. Thus a graph of dollars plotted against pounds 
sterling, illustrating a rate of exchange, is a straight line graph passing through 
the origin (Figure 14-2). The formula describing the graph is

pounds sterling = R x US dollars ,

R being the rate of exchange.
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Some linear relationships have straight lines that do not pass through the  
origin. For example, the cost of shipping goods to a particular destination 
might be $2 per kilogram plus $60. The formula has the form,

Cost ($) = 2 x weight (kg) + 60.

The graphs in Figure 14-3 show that as one of the quantities increases, so 
does the other. This is called positive correlation. Negative correlation describes 
relationships in which one quantity decreases as the other increases.

Figure 14-2. A straight-line conversion graph
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Figure 14-3. A graph of the cost of shipping goods of different weights, presented in several 
ways to illustrate the visual effects of changing the scale and suppressing the origin

Figure 14-3 illustrates also how the relationship between the variables can be 
made to appear different by changes of the scale used for plotting the graphs 
and by suppression of the origin.

When we are dealing with variables that are not precisely related, an initial 
examination of the data involves plotting a scatter graph. The individual data 
points are plotted on a graph whose axes represent the two variables involved. 
By eye, it may be possible to see a rising or falling trend indicating positive or 
negative correlation. A useful technique, illustrated in Figure 14-4, is to draw 
a horizontal line positioned so that half the data points are above the line and 
half are below.  A vertical line is then drawn so that half the points are to the 
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Figure 14-4. Examples of scatter graphs used to explore the existence of correlation 
between two variables

left and half are to the right. A count of the points in each quadrant suggests 
correlation by any appreciable excess in either of the diagonally linked pairs 
of quadrants.
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If there is evidence of correlation, a best-fit straight line can be located by eye. 
A transparent ruler allows the line to be located so that an equal or nearly 
equal number of points lie each side of the line and so that the distances of 
the points from the line are minimized. An improvement to the procedure 
involves calculating the mean value of each of the two quantities, plotting the 
values as a point on the graph, and ensuring that the line passes through it.

The gradient of the best-fit line—the steepness or slope, in other words—
is the extent the line goes upward divided by the extent it moves to the 
right. Note that the gradient can mistakenly be taken as a measure of the 
 correlation between the two variables, a steep line appearing to suggest strong  
correlation. The numerical value of the gradient is, in fact, arbitrary in depend-
ing on the units used in measuring the variables. For example, a formula for 
the time to cook a chicken might be

Time (minutes) = 45 × Weight (kg) + 30,

and the gradient of the graph is 45. If hours are used, the equation is

Time (hours) = 0.75 × Weight (kg) + 0.5,

and the gradient is 0.75. The extent of correlation between the two variables 
depends on the closeness of the points to the line, regardless of the line’s 
gradient—provided that there is a gradient. Clearly, if there is no gradient, 
one of the variables cannot influence the other and there is zero correlation. 
A glance back at Figure 14-3 confirms that the gradient can be made to look 
large or small by changes of scale and can therefore misrepresent the extent 
of correlation between the two variables.

The position of the best-fit line can be determined by a statistical procedure 
called linear regression, which we now need to look at. The word regression 
is used here with the meaning of estimation, in that the line will be used to 
estimate the value of one variable from the value of the other.

Suppose we wish to know how fast a particular type of tree grows. We 
obtain data showing the height of a representative tree as measured each year  
up to five years old. The points are plotted in Figure 14-5 and the values are 
as follow:
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Year Height (m)

x y (x–xm) (y–ym) (x–xm)(y–ym) (x–xm)2 (y–ym)2

1 0.1 –2 –0.6 1.2 4 0.36

2 0.6 –1 –0.1 0.1 1 0.01

3 0.9 0 0.2 0 0 0.04

4 0.9 1 0.2 0.2 1 0.04

5 1.0 2 0.3 0.6 4 0.09

Total 15 3.5 2.1 = Sxy 10 = Sxx 0.54 = Syy

Mean 3 = xm 0.7 = ym

Figure 14-5. A graph of the height of a tree at different ages with its calculated simple linear 
regression lines

The difference between each value of x and the mean value of x is shown, 
together with the square of each difference. The y values are treated simi-
larly. The product of each x difference and the corresponding y difference is 
included.
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The equation of the best-fit line is given by the formula,

y–ym = (x–xm)Sxy /Sxx ,

which, inserting the values from above and rearranging, gives

y = 0.21x + 0.07.

The line, which is included in Figure 14-5, passes through the point located at 
the mean value of x and the mean value of y, and this will always be found to 
be so. The line is best-fit in that the squares of the deviations of the measured 
y values from the values predicted by the graph are minimized.

The observant reader will have noticed that although the value of Sxx appears 
in the equation, Syy does not. This is because there are in reality two best-fit 
lines, the second one having a similar equation except for the replacement of 
Sxx by Syy and the transposing of x and y. How could there be two best-fit lines? 
The reason is that it depends on how the graph is to be used. The line we 
have just calculated is called the regression of y on x and it is designed to give 
the best estimate of the y value when the x value is given. Thus, if we know the 
age of our tree, we can use the graph to estimate its height.

But we may want to use the graph to be able to estimate the age of a tree 
when we measure its height, which is a different process.

The requirement then is for the line representing the regression of x on y. 
The equation is

x–xm = (y – ym)Sxy /Syy

which, when rearranged, gives

y = 0.26x – 0.07.

This second regression line is included in Figure 14-5. The line again passes 
through the point representing the mean values of x and y, but it has a some-
what different gradient compared to the previous line. The two lines are 
similar in this example; and, generally speaking, the greater the correlation 
between the two variables, the closer the two lines will be. Indeed, if there is 
perfect correlation, a conversion graph for example, there can be only a single 
line.

The above example was chosen to illustrate the usefulness of and the  
difference between the two regression lines. Often, however, it is sensible 
to use the graph in one direction only: this gives rise to the distinction 
between the independent variable and the dependent variable, which has been  
previously described. If we are free to fix the values of one of the variables, 
then this variable is the independent variable. The other is the dependent 
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variable because its values depend on the fixing of the values of the indepen-
dent variable. Relationships are commonly used to estimate the value of the 
dependent variable, and only one regression line is then required.

Sometimes it is known at the outset that the regression line must pass through 
the origin because, when one of the variables is zero, the other must be zero. 
The equation is now somewhat simpler, but we need a few additional calcula-
tions, as follow.

Year Height (m)

x y xy x2 y2

1 0.1 0.1 1 0.01

2 0.6 1.2 4 0.36

3 0.9 2.7 9 0.81

4 0.9 3.6 16 0.81

5 1.0 5.0 25 1.00

Total 12.6 = S(xy) 55 = S(x2) 2.99 = S(y2)

The equation is

y = (S(xy)/S(x2))x,

which gives

y = 0.23x

if we take x as the independent variable. In other words, we are estimating the 
height of the tree, y, from its age, x. If y is considered to be the independent 
variable, to allow estimates of age from a known height, then the equation is

x = (S(xy)/S(y2))y,

which gives

y = 0.24x.

We might argue that the height of our tree is zero, or very nearly so, when 
its age is zero and that, therefore, these would be the preferred equations. 
However, taking a more practical view, we would say that our graphs are for 
use on trees that have achieved sufficient height to be considered trees; and, 
furthermore, the rate of growth might be very different when the tree is little 
more than a seedling and should not be allowed to influence the correlation 
within the range of practical use. In this case we would use the graphs of 
Figure 14-5.
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Appropriate analysis yields regression lines, but the question remains as to 
how meaningful the correlation is. A correlation coefficient, r, can be readily 
calculated at the same time as the regression lines are being determined. The 
full name of the coefficient is the product-moment correlation coefficient, but it 
is often referred to as Pearson’s coefficient. The coefficient has the property 
of always having a value between +1 and –1. A value of +1 indicates perfect 
positive correlation: all the plotted points lie exactly on the straight line and 
the line has a rising slope. A value of –1 indicates perfect negative correlation: 
the points again lie exactly on the line but the slope is descending. A value 
of 0 indicates no correlation, the plotted points being randomly scattered.  
A degree of judgment is generally necessary in interpreting the value obtained. 
A value of around 0.5 indicates some correlation but anything below about 
0.4 would raise serious doubts. The equation for r is

 r S S Sxy xx yy= / ( ) . 

In the tree example above, the data gives r = 0.90.

The value of r2 can be used to indicate the usefulness of the correlation. With 
r equal to 0.9, r2 is 0.81 and shows that 81% of the variation in the dependent 
variable is due to the variation in the independent variable. Thus 19% of the 
variation is due to other factors.

The correlation that has been established relates strictly to the data in this 
particular sample, whereas we would want to use the correlation in studying 
other samples of similar trees. In order to justify the use of the correlation to 
represent the population from which the sample was obtained, it is necessary 
to determine the significance of the result. This can be done by using tables 
of critical values for the product-moment correlation coefficient. A selection 
of values is shown below.

One Tail Two Tail

Size of Sample 5% 1% 5% 1%

3 0.988 1.000 0.997 1.000

4 0.900 0.980 0.950 0.990

5 0.805 0.934 0.878 0.959

10 0.549 0.715 0.632 0.765

15 0.441 0.592 0.514 0.641

20 0.378 0.516 0.444 0.561

30 0.306 0.423 0.361 0.463

40 0.264 0.367 0.312 0.403
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Our value of 0.9 can be seen to be significant at the 5% level for both a  
one-tail and a two-tail test. If at the outset we were investigating whether 
there was a significant correlation between tree height and age—in other 
words, whether the true gradient of the graph was not zero—then we would 
apply the two-tail test. If we were investigating whether there was a positive 
correlation between tree height and age—in other words, whether the gradi-
ent was greater than zero—we would apply the one-tail test: the second tail 
corresponding to a negative correlation which would clearly be impossible 
in our tree example. The point was made previously that statistical tests are 
designed to establish the significance of hypotheses which are clearly defined 
at the outset.

It may seem odd that the testing for significance relies on comparing the 
gradient of the graph with the value of zero. We might have a gradient of 28, 
say, on one occasion and a gradient of only 0.28 on another. The first value is 
much further from zero than the second. However, as mentioned previously, 
the numerical value of the gradient is arbitrary because it depends on the 
units being used. The criterion for significant correlation is the likelihood of 
there being a gradient—that is to say, we are looking at the probability of the 
gradient having any nonzero value.

Confidence intervals can be obtained and represented by bands either side of 
the regression line. These indicate the reliability, on average, of predictions 
made from the line. Somewhat similar are prediction intervals with wider bands, 
showing the reliability of individual predictions at different position along the 
graph.

In some investigations, it may be known that individual points on the graph 
have different degrees of reliability. Some may be the mean values from large 
samples and others from small samples. Some may be from more accurate 
measurements than others. In such instances, each point may be shown with 
an error bar indicating the individual reliability. A vertical error bar is centered 
on the plotted point, the length of the bar indicating the confidence limits of 
the dependant variable. If the independent variable is subject to some uncer-
tainty, there may be a similar horizontal bar centered on the point.

Note that predictions from regression lines are valid only within the range of 
the values represented. It is not possible to extrapolate a regression line to 
obtain values outside this range. Effort put into obtaining regression lines in 
order to extrapolate the data can give dangerously misleading results.

Numerical data can be treated in a ranking procedure as an alternative to 
obtaining regression lines. I described the method in Chapter 11. Each set of 
data is arranged in order and given rank numbers of 1 upward. The method 
is rapid compared with treating the numerical data as we did in the example 
of linear regression, but the main advantage arises when the data contains 
extreme values, usually a result of the data not being normally distributed. 
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Samples of salaries, for example, generally contain some very high values that 
will influence greatly a numerical correlation based on fitting a straight line. 
When the data are ranked in order of size, there are no extreme values. 
Note, however, that ranking tests are non-parametric: they do not assume any 
particular distribution of the data and are not as powerful as parametric tests. 
Also, although the ranking provides a measure of the extent of correlation, 
it does not give information regarding the way the two variables are related, 
other than showing whether the correlation is positive or negative.

Nonlinear Relationships
When the data are plotted, there may be evidence of a curved rather than a 
linear relationship. One way of dealing with the situation is to transform the 
data in order to achieve linearity. The following values show the growth in 
population of a town over a number of years:

Year 1700 1750 1800 1850 1900 1950 2000

Population
(10,000’s)

1.0 4.0 6.3 17.6 26.0 33.6 51.0

The graph, shown in Figure 14-6(a), is curved and the ever-steepening shape as 
time increases suggests that taking the square root of each value of population 
would produce a straighter line.

Square Root 1.0 2.0 2.5 4.2 5.1 5.8 7.1

Figure 14-6(b) shows the re-plotted data and it can be seen that the graph is 
approximately linear. Examination of significant correlation could be carried 
out as in the previous section.
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Data can be transformed by applying any mathematical procedure. Commonly 
used transformations employ squaring, square rooting, cubing, cube rooting, 
taking the logarithm of one of the variables, and taking the logarithm of both 
variables.

In scientific work when a law relating the two variables is sought, transforma-
tions that are successful can suggest the physical processes underlying the law. 
To illustrate this, we can consider a well-known law relating the distance, R, 
of a planet from the Sun and the time, T, it takes to go once round the Sun. 
If we plot the two variables as shown in Figure 14-7(a), we get a curve. If we 

Figure 14-6. Graphs of the population growth of a town showing (a) the raw data and (b) 
the data transformed by plotting the square root of the population
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transform the variables by plotting the cube root of T against the square root 
of R, we get a straight line passing through the origin, Figure 14-7(b). (This is 
equivalent to showing that T2 is proportional to R3, which is the way the law is 
usually expressed. However, a plot of T2 against R3 has to be unacceptably large 
to accommodate the very wide range of the data.) We can then apply linear 
regression to locate the best line and use it to predict the path of any new 
minor planet that might be discovered. In reality, of course, the law relating  
T and R is well known (though not quite as simple as suggested here, because 
the orbits are elliptical and not perfectly circular) and the features of the orbit 
of any planet can be accurately calculated.

Figure 14-7. Graphs of a planet’s length of year in relation to its distance from the Sun, 
showing (a) the raw data and (b) the transformed data
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Sometimes, however, red herrings crop up. The Titus–Bode law was based on 
an apparent relationship between the sequence of the planets from the Sun and 
their distances from the Sun. Figure 14-8(a) shows a plot with the numerical 
sequence on the x-axis and the distances from the Sun on the y-axis. Note that 
Neptune had not been discovered when the law was proposed and that Ceres 
(a prominent asteroid) was considered to be a planet. The graph is curved, and 
a transformation looks useful. If we transform by taking the logarithm of the 
distance and re-plotting, we get, with the exclusion of Neptune, a linear rela-
tionship, as shown in Figure 14-8(b). The correlation is good: the correlation 
coefficient, r, has a value of 0.995. When Neptune was discovered, it was found 
to depart drastically from the supposed relationship. Nowadays, the Titus–Bode 
law is considered to be no more than a curious coincidence or, at best, a combi-
nation of several factors that combine to give an apparent simple connection.

Figure 14-8. Graphs of a planet’s distance from the Sun in relation to its numerical sequence 
from the Sun (Titus-Bode law), showing (a) the raw data and (b) the transformed data
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Achieving a linear relationship by use of a transformation is thus a useful and 
straightforward technique. It does suffer from the problem that minimizing 
errors in order to get the best fit is itself affected by the transformation.  
In other words, the best-fit line represents the best fit for the transformed 
variables but not necessarily the best fit for the variables themselves.

It should be noted that it is always possible to find the equation of a line that 
will pass through any distribution of points. An equation of the form

y = a + bx,

where a and b are constants, is always a straight line. An equation of the 
form

y = a + bx + cx2

gives a curve which turns once. An equation of the form

y = a + bx + cx2 + dx3

gives a curve which turns twice, and so on. Such equations are called  polynomials, 
and the fitting of such equations is referred to as polynomial regression. If we 
search for a polynomial equation with no restriction on length, we will always 
be able to obtain a curve that passes through all our experimental points. 
Clearly, this becomes a useless exercise: the final equation will have no mean-
ing. We might just as well have drawn by hand a wiggly curve passing through 
all our points. Common sense dictates the extent to which it is reasonable to 
proceed down this path.

It is evident that there is not a unique best-fit line if we are to allow unrestricted 
curving of the line: it is always necessary to decide what is to be accepted in 
terms of the shape of the line or the form of the equation describing the line. 
Numerous computer packages are available for nonlinear regression. They 
are essentially trial-and-error procedures, and hence computer-intensive, pro-
gressing by iteration to a fit that meets the acceptable criteria and minimizes 
the errors of the experimental points in comparison with predictions from 
the line. This is, of course, what we saw with regard to linear correlation, 
where a straight line was the acceptable criterion and the mathematics mini-
mized the errors of the individual points, though without the need for lengthy 
iterations.

Irregular Relationships
Two variables may not be related in any apparent, or even predictable,  
way but may nevertheless be related. Commonly, one of the variables is time. 
Many things vary with time: indeed, most things do. In the world of business 
and commerce, a great deal of attention is paid to how various quantities are 
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changing. We wish to see how our profits are rising month by month or year 
by year. Or we look at the change in the stock market figures each morning 
in the newspaper. Such data are characterized by their to-and-fro variability, 
and because of this it is possible to draw numerous conclusions, some of 
which will be favorable from the point of view of the presenter and others 
of which will be unfavorable. Figure 14-9(a) shows the variation of the FTSE 
100 financial index of shares from its inception in 1984. There is clearly a 
marked degree of positive correlation, but a search for a quantifiable correla-
tion would be rather pointless.

In Chapter 6, I warned about suppressing the origin when presenting bar 
charts. The same warning applies to line graphs: the result can be extremely 
misleading, particularly when the origin is suppressed on the vertical axis—i.e., 
the dependent variable. We must bear in mind, however, that sometimes, par-
ticularly with regard to graphs showing changes with time, we must suppress 
the origin. Indeed, when did time start? The time axis clearly can start at any 
convenient point, and the vertical axis may have to start distant from zero. 
The graph in Figure 14-9(a) has a true origin, since the FTSE index started in 
1984 with a value of 1000, and the graph is useful in showing the historical 
changes. But if you purchased shares within the past few weeks, you would be 
more interested in a graph such as Figure 14-9(b), which necessarily has its 
origin suppressed. The vertical axis is broken. A break is shown in the vertical 
axis, the index value; but to break the time axis would be pedantic in view of 
what has been said.
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Similarly, financial data relating to companies may be of interest only over the 
recent past and suppressing of the origin of graphs may be justified. The jus-
tification, however, can provide latitude within which misleading impressions 
may be given.

The table of figures below shows the monthly profits over a two year period 
for a small company. For simplicity, the figures are shown as small numbers in 
units of  $1000.

Figure 14-9. Graphs of the movements of the UK FTSE 100 index showing (a) the inclusion of 
the origin on the vertical axis and (b) an acceptable presentation of the suppression of the origin
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2008 1.3 1.1 1.1 1.4 1 1.2 1.3 1.6 1.2 1.3 1.1 1.4

2009 1.4 1.6 1.4 1.6 1.2 1.5 1.7 1.9 1.6 1.5 1.6 1.6

The data is shown as a line graph in Figure 14-10(a). The ups and downs  
provide opportunities for the company to present optimistic views from time 
to time and also for critics to present less favorable commentaries.

To present the data in a way that smooths out the fluctuations, a moving aver-
age can be used. This is particularly useful when it is recognized that there 
could be cyclic variations in the data—seasonal variations, for example.

The average employed can be the mean or the median. We will use a three-
month moving average based on mean values. That is to say, we will average the 
values for the first three months, Jan to Mar, 2008; and then, moving along by one 
month we will average the values for Feb to Apr, 2008. The next average is for 
Mar to May, 2008, and so on. The results are shown plotted in Figure 14-10(b). 
The graph is now smoother, showing a gentle rise with time. The product-
moment correlation coefficient is 0.88, compared to 0.70 for the original graph. 
A graph of the six-month moving average, shown in Figure 14-10(c), fluctuates 
even less, and the correlation coefficient has increased to 0.99.
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Figure 14-11 shows the data of Figure 14-10(c) with the origin suppressed, 
the vertical scale extended, and no break in the vertical axis. It can be seen 
that the effect is to suggest that there has been an improved growth in profits. 
Also, it becomes apparent that the omission of the origin on the vertical axis 
(the dependent variable) is more misleading than omission on the horizontal 
axis (the independent variable).

Figure 14-10. Graphs of the growth of profits of a small company showing (a) the raw data, 
(b) the three-month moving average, and (c) the six-month moving average
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Time is always plotted as the independent variable, and, as I previously pointed 
out, it is not feasible to show a true origin. Some other variables present 
the same kind of problem. Temperature is often the independent variable;  
the true zero, which is –273° Celsius, is never shown except in scientific  
publications relating to extremely low temperatures. In Figure 14-1, the tem-
perature axis was shown with the origin suppressed and without a break in 
the axis. Note that 0ºC and 0ºF are not true zeroes: 20ºC is not twice as hot 
as 10ºC. Converting the two temperatures to Fahrenheit—50ºF and 68ºF, 
respectively—shows that the apparent doubling is not meaningful.

MARKET MARKETING

John and his wife Kate had a small business operating from market stalls in nearby 
towns. They visited each town once a week on the same day of the week. They sold a 
range of household essentials, such as kitchen and bathroom cleaning products, soaps, 
polishes, dusters, and brushes. 

Although their overhead was low, they still had difficulty competing on price with the 
large supermarkets. They considered offering reduced prices for multiple purchases, as 
the supermarkets did, but were unsure whether this would lead to an increase in profit.

Kate asked her brother, Ted, for advice. He had some business experience and also had 
some knowledge of statistics.

Ted suggested an experiment. The goods would be sold on the basis of a percentage 
reduction when two of the same items were purchased. The purpose of the experiment 
was to find the optimum percentage reduction to apply. If the reduction was too low, say 
10%, it would make little difference to sales or profit. If it was too high, 80% say, it would 
eat into the existing profit margin so much that increased sales would not compensate. 
Somewhere in between would be an optimum.

Figure 14-11. Data from Figure 14-10 (c) with the origin suppressed and the scale changed
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Ted suggested that John and Kate should start with a 10% reduction for two weeks and 
increase the reduction in 5% steps every two weeks up to a maximum reduction of 75%. 
The profit each day for each two-week period would be recorded.

The experiment was undertaken and the results passed to Ted for analysis. He first 
plotted a scatter graph of profit against percentage price reduction. He was not surprised 
to see that a best straight line would not be of any use: it would be approximately 
horizontal. However, he was pleased to see that there was indication of a profit increase 
in the central region of the graph. The task was to identify where the peak occurred. He 
made use of a statistical package to fit a low-order polynomial to the data and found 
that the peak value of profit was located at about 35% price reduction. John and Kate 
adopted a “one third off for a purchase of two of the same” practice and were pleased 
to enjoy a 3% increase in profits.

Ted pointed out that more could be done. In the original experiment, other variables had 
not been separated out. It would be possible to experiment further with a range of price 
reductions applied to different products and to the different towns that the couple traded 
in. This was just the beginning of a new marketing strategy.



Relationships 
with Descriptive 
Data
Any Color as Long as It’s Black

Much of the data involved in business operations is descriptive rather than 
numerical. In product development and marketing we have decisions to make 
regarding color, shape and packaging. Surveys will have resulted in yes/no 
answers to questions. Records will show whether a product is popular or 
unpopular, whether it sells or doesn’t sell.

Nominal Data
If the data is nominal, we speak of association between the variables rather 
than correlation, and this can be examined by several means. Suppose we wish 
to know whether a particular medical treatment is effective in helping to cure 
a complaint.  A sample of patients might give the following results:

Treated Not Treated Total

Cured 100 30 130

Not Cured 40 30 70

Total 140 60 200

15
C H A P T E R 
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Yule’s coefficient of association, Q, can be calculated from the four values in 
the two-by-two table, making use of the products of the diagonals. With the 
above values,

Q = (100x30 – 30x40)/(100x30 + 30x40)   = 0.43.

The value of Q is always between +1 and –1, the size of the value being 
related to the strength of the association. The sign, + or –, indicates the 
direction of the association: in our example, whether the treatment results in  
more or fewer cures.  An improved version of  Yule’s coefficient, which involves  
a slightly more involved calculation, is the tetrachoric correlation coefficient. 
Yule’s coefficient of association cannot be used when there are more than 
two rows or columns. Instead, the polychoric correlation coefficient is used.

The same data can be examined by a so-called contingency test. If the treatment 
had no effect, it would be expected that the proportion of cured to not cured 
would be the same for the treated and the not treated. The values, keeping 
the totals the same, would appear as follow:

Expected Numbers

Treated Not Treated Total

Cured 91 39 130

Not Cured 49 21 70

Total 140 60 200

Thus 91/49 = 39/21 = 130/70. The issue then is whether the actual values 
depart significantly from these expected values. Our null hypothesis is that the 
two sets of values are not significantly different.

You saw in Chapter 7 how the chi-squared test can be used to compare two 
distributions. In effect, we have two distributions here: the distribution of 
sampled values and the distribution of expected values. Thus the chi-squared 
test can be used. The first step is to tabulate the differences between the 
actual and expected values. Each difference is squared and divided by the 
expected value. The sum of these values is the value of chi-squared.
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Difference Difference d2/expected value

d squared, d2

Treated

           Cured + 9 81 81/91 = 0.89

           Not Cured – 9 81 81/49 = 1.65

Not Treated

           Cured – 9 81 81/39 = 2.08

           Not Cured +9 81 81/21 = 3.86

Total 8.48

There is only one degree of freedom, because the fixing of one of the four 
values in the table determines the other three. From the extract of the tables 
of the chi-squared distribution shown in Chapter 7, we see that the value of 
8.48 is significant at the 1% level. Thus our null hypothesis is rejected, and we 
conclude that there is strong evidence for the effectiveness of the cure.

The example above uses a two-by-two table, having two rows and two 
columns. The procedure can accommodate a larger number of categories 
within the restriction of two variables. The variables could be, for example, 
color of hair and place of birth. The following table, a three-by-three, shows a 
possible set of data from a small sample:

   Hair Color

Place of Birth Brown Black Blonde Total

England 11 2 4 17

Scotland 5 8 0 13

Wales 4 5 1 10

Total 20 15 5 40

If there was no relation between hair color and place of birth, we would 
expect the numbers to simply reflect the sizes of the various categories. 
Thus the table can be recast showing the expected number of individuals 
in each category. The expected number of brown-haired individuals born in 
Wales, for example, is shown as 5: a quarter of the total of 20 brown-haired 
individuals sampled, because a quarter of the total individuals, 10 out of 40, 
were born in Wales.
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Expected Numbers

Hair Color

Place of Birth Brown Black Blonde Total

England 8.50 6.38 2.13 17

Scotland 6.50 4.88 1.63 13

Wales 5.00 3.75 1.25 10

Total 20 15 5 40

The decision to be made is whether the two tables are significantly different. If 
they are not significantly different, we can conclude that there is no evidence 
of hair color being related to place of birth. The differences between the 
two tables would be attributed to random errors in the sampling. If we find a 
significant difference, we would conclude that there is evidence of hair color 
being related to place of birth, and we would examine the data further to 
identify which combinations of hair color and place of birth were the source 
of the relationship.

To establish the level of significance, chi-squared is calculated as before. The 
difference between each sample value and its expected value is squared and 
divided by the expected value. These values, individual values of chi-squared, 
are added together to give an accumulated chi-squared for the whole data 
set. There are four degrees of freedom because fixing four of the nine values 
in the table determines the other five. In general, for contingency tables, the 
degrees of freedom are one less than the number of rows multiplied by one 
less than the number of columns. In this example, the value of chi-squared is 
10.0, though the calculation is not shown; and from the tables of the distribu-
tion in Chapter 7, we find that the result is significant at the 5% level.

Ordinal Data
You saw in Chapter 11 how you can compare two sets of rankings to decide 
whether there is a significant difference between them. In the example that 
you looked at, two judges each put seven restaurants in order of preference. 
The identical technique, using Spearman’s rank coefficient or a similar one, can 
be used to examine whether two rankings of different attributes are related. 
Indeed, we mentioned that these ranking techniques are in essence correla-
tion techniques for examining possible relationships. Ranks can be allocated 
to data from different variables regardless of the nature of the variables, and 
it is this feature that makes ranking techniques so versatile.
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Suppose, for example, that we suspected that our first judge in the previous 
example was influenced by the size of the restaurant rather than the quality of 
the food and the service. We could rank the restaurants in order of size and 
list them alongside the judge’s ranking:

Judge 1 Size Difference, d d2

Restaurant Rank Rank

A 4 4 0 0

B 2 2 0 0

C 3 6 3 9

D 1 1 0 0

E 5 3 2 4

F 6 7 1 1

G 7 5 2 4

Total 18

Spearman’s coefficient is calculated by

r = 1– 6 x (sum of d2)/(n(n2– 1))

where n is the number of items that are ranked. In our example

r = 1– 6 x 18/(7(49–1)) = 0.68.

This value is referred to published tables of r to obtain the significance level. 
A selection of published values was included in Chapter 11. Our value of 0.68 
with n equal to 7 does not reach the 5% significance level, so we conclude 
that there is no significant evidence that the judge was influenced by the size 
of the restaurant.



Multivariate 
Data
Variety Is the Spice of Life

Practical problems often make it difficult to obtain homogeneous and  
similar samples. For example, samples may involve individuals of different ages 
and may have to be taken on different days of the week. Individuals differ in 
numerous ways, and real effects can arise on different days. It could be said, 
quite rightly, that samples differ because a variety of effects are always present, 
each creating a difference. In other words, no matter how we aim to obtain 
homogeneous samples, we will end up with multiple effects. In the past, when 
analysis involved lengthy procedures, this was a nuisance. Now, with the avail-
ability of computer packages that provide rapid and more versatile processing, 
multivariate data analysis is seen to be a great advantage and has in many areas 
taken over from the simplistic methods I have been describing.

The availability of rapid computer processing has brought with it other  
features. One is the increasing number of new methods that are appearing. 
New methods bring greater sophistication during processing but greater  
difficulty in understanding the detail involved, and controversy over their 
applicability to particular situations. An accompanying drawback to the ease 
of processing is that it becomes easy to search for any possible relationship 
that appears to be suggested by the data. As I have pointed out before, if 
enough correlations are sought, a number of spurious ones will be found, 
simply because of the probability governing the indication of significance. The 
relationships sought should be defined before the data is examined.

16
C H A P T E R 
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Chapter 4 mentioned the large databases that many organizations have. The 
data is potentially the source of unknown useful relationships; and sophisti-
cated, computer-intensive procedures are used to extract those relationships. 
This process is referred to as data mining, and progress in developing and 
applying such methods has promoted data mining to an important subject 
in its own right. In a way, this compromises what I said above, that required  
possible relationships should be defined before the data is searched. The issue 
is discussed further in Part VII.

A drawback of computer processing is that the visibility of the processing is 
lost. The data is fed into the program, and the results are quickly displayed. 
In this chapter, it would be pointless to attempt to illustrate the processing 
of the data in detail. More useful to you will be a guide to the appropriate-
ness of various methods, an outline of what each method does, and a guide 
to interpreting the results. Another drawback of computerized procedures is 
that anyone—even someone who lacks understanding of the methods, their 
restrictions, and their proper interpretation—can carry out analyses and  
produce conclusions.

The need for large samples has been mentioned a number of times. Here, 
because many different effects are involved, the samples need to be large in 
relation to each effect of interest. Note, though, that too large a sample may 
result in a large number of effects being found to be significant but with little 
practical use or meaning. In the sample, every feature is real. The larger the 
sample, the greater the number of variables that will be found to be significant. 
Ultimately, as the sample size approaches the total population, every feature 
of each datum becomes significant and reflects the fact that in the population, 
every feature is real.

You saw previously the difference between dependent and independent  
variables. A dependent variable is one that we observe rather than control, 
or the one we are attempting to predict. An independent variable is one that 
we fix or is fixed for us by circumstances. Thus, if we wish to see how illness  
varies with age, illness is the dependent variable and age is the independent 
variable. Clearly, illness depends on age, whereas age does not depend on 
illness. The distinction between the two kinds of variables is important in 
choosing the appropriate multivariate analysis method.

Previously we have separated numerical data from descriptive data in present-
ing the various techniques. The distinction becomes blurred when we are 
dealing with multivariate data. We may have both numerical and descriptive 
data involved in the same relationship. Also, we can in some methods render 
descriptive data numerical by the use of dummy variables. A dummy variable is 
a numerical code representing a descriptive variable. For example, if we have 
male or female as one of the variables, male could be coded as 0 and female as 1. 
With three levels of description, the coding could be 0, 1, and 2, and so on. 
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The various methods described in the following sections are ordered gener-
ally from numerical to descriptive; but as you will see, there is considerable 
overlap.

Multiple Regression
If there is one dependent numerical variable and several independent numeri-
cal variables, multiple regression may be used. We may, for example, wish to 
know how much a person generally pays when buying a car, in relation to 
the person’s age, income, and savings. The principle is the same as in simple 
linear regression (Chapter 14). The squares of the differences between the 
observed values and the predicted values are minimized. In other words, the 
analysis is in terms of variance.

The form of the relationship used is

y = a + bx1 + cx2  + dx3  + … ,

where y is the dependent variable (i.e., the cost of the car in the  example 
above), and x1, x2, x3, .... are the independent variables (age, income and  
savings, etc.). The letters a, b, c, d, .... represent constants, and the purpose of 
the analysis is to determine the best values for these constants. The form of 
the equation is linear—in other words, values of y plotted against one of the  
x values, the other x values being held constant, would yield a straight line.

However, this does not mean that curvature cannot be accommodated. If the 
data suggested that an increase in savings had an ever-increasing effect as the 
savings increased, we could add x3

2, i.e. the square of savings, in the linear equa-
tion. The equation would then be

y = a + bx1 + cx2  + dx3  + ex3
2

The data may suggest other non-linear relationships, and transformation of 
the variables can be used to modify the equation appropriately. For example, 
c(1/x2) might take the place of cx2 by transforming the x2 data values to 1/x2. 
The dependent variable, y, may also be transformed if necessary. The equation 
can also incorporate possible interactions between the variables. For example, 
we might decide to include a term f(x1 x3 ) to allow for interaction between 
age and savings. In other words, we would be allowing for the likelihood that 
the influence of savings would be different for different age groups. It must be 
remembered that the fit of the regression equation is based on minimizing the 
errors of the transformed variables and not the original variables.
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When the constants a, b, c, d, …  have been calculated and the regression 
equation has been obtained, we need a measure of the usefulness of the equa-
tion. The multiple coefficient of determination, R2, is analogous to r2 that we 
met in relation to simple linear regression with two variables. R2 indicates, in 
a similar manner, the proportion of the variation in y that is accounted for by 
the equation. The closer the value of R2 is to unity, the better the equation 
fits the data. Note, however, that although the equation may be useful, it may 
not be the best possible. It could be that a different selection of  variables or a 
different transformation of variables would give a more useful equation.

Note also that as more variables are included the value of R2 will approach 
unity. Indeed when the number of variables equals the number of data then  
R2 = 1. There is also an increase in R2 as the sample size increases. An adjusted 
value of R2, the adjusted coefficient of determination, which compensates for 
the increase in sample size and number of variables, is usually quoted in the 
results provided by computer packages.

Unless the sample consists of the total population, it is necessary to establish 
the reliability of using the regression equation to represent the population. 
The variance ratio test, or F-test, described in Chapter 10, can be used to 
test at an appropriate significance level whether R2 differs from zero, in other 
words whether there is a significant relationship. Additionally, each of the 
constants in the regression equation, b, c, d, … , can be tested using Student’s 
t-test to establish whether it differs significantly from zero and at what level 
of significance. A constant found not to differ significantly from zero indicates 
that the associated variable can be removed without affecting the usefulness 
of the correlation.

Descriptive variables can be included in multiple regression analysis by the 
use of dummy variables, though the dependent variable must be numerical. 
A technique known as canonical correlation extends the principle of multiple 
regression to dealing with several numerical dependent variables and several 
numerical independent variables. With the use of dummy variables, the tech-
nique can be extended to dealing with several descriptive dependent variables 
and several descriptive independent variables.

Analysis of Variance
You saw in Chapter 10 how analysis of variance (ANOVA) can be used to 
compare two or more samples in order to decide whether they could have 
been drawn from the same population. The method can be extended to 
 analyze data that is influenced by more than one effect. For example,  suppose 
we have test results for students in four subjects. We wish to investigate 
whether there is a difference between the results for boys and girls and 
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whether ability in different subjects is related. Here we have two effects, or 
factors—subject and gender—and both of these are descriptive. These are 
the independent variables, while the dependent variable, which is numerical, is 
the mark obtained in the test.

Thus the data might be as follow: 

Marks Obtained in Test

English Mathematics History Science

Boys 45, 52, 51,… 66, 58, 56, … 59, 51, 46, … 71, 67, 60, …

Girls 70, 64, 55, … 64, 61, 55, … 62, 54, 43, … 66, 62, 59, …

For this type of analysis, it is necessary to have a numerical dependent  
variable and several descriptive independent variables. The analysis of  variance 
will allow the total variance in the data to be partitioned between the  various 
sources of variance. In this example, there is a variance attributed to the gender 
of the students and a variance attributed to the test subject. In  addition, there 
is variance due to interaction between these two main effects. Interaction 
arises when the effect of gender is different in relation to different subjects: 
boys may be better than girls in science but poorer than girls in English. There 
is also a contribution to the total variance from effects that are not included 
in the analysis. This is the residual variance.

To illustrate the method we will outline the working through of an example 
with three effects and a replication of the data.

A company has three factories, and in each factory are three slightly  different 
machines, versions 1, 2, and 3. On most days, the machines suffer from over-
heating of up to 3 degrees. The company wishes to see if the overheating 
is related to the version of the machines or to the circumstances of use in 
the three factories. The operating temperature of each machine is observed, 
and the excess temperature is recorded. In case the day of the week is  
relevant, records are taken on five days from Monday to Friday. The exercise 
is repeated the following week to give a measure of replication. The results 
are assembled as follows:
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Machine Overheating (degrees Celsius)

Factory F1 F2 F3

Machine M1 M2 M3 M1 M2 M3 M1 M2 M3

Day 1 0 1 2 0 1 1 2 2 3

Day 1 2 2 3 0 1 2 0 3 2

Day 2 1 2 3 2 1 3 1 1 2

Day 2 2 1 1 0 2 2 0 3 3

Day 3 1 1 0 1 2 1 1 1 1

Day 3 3 1 2 1 1 3 1 2 2

Day 4 2 0 2 2 2 3 0 1 3

Day 4 0 3 3 0 2 1 2 2 1

Day 5 2 3 2 2 0 2 2 0 0

Day 5 3 1 3 2 2 3 2 2 3

Note that the numbers here are all small integers. This is purely to keep the 
illustration simple. In a practical situation we would expect to have numbers 
consisting of several digits.

The ninety values listed have a variance which is due to a number of factors. 
The variability between factories, between machines, and between days of the 
week contributes to the overall variance. Interactions between each pair of 
variables and between all three variables may contribute. In addition, there 
are almost certainly other sources of variation that cannot be identified. The 
analysis of variance allows the total variance to be apportioned between the 
various factors. It is this additive property of variances that makes the analysis 
of variance such a powerful tool.

It would not be helpful to plow through the arithmetic in detail: computer 
packages are available to do the job. More useful is an explanation of what the 
calculation does.

The first three columns of the above table are the results from factory F1, 
thirty in total. If we were to temporarily replace each value with the mean 
value of the thirty, and do the same for F2 and F3, we would have a set of ninety 
values, the variance of which would reflect the variation due to any differences 
between the factories. Similarly, we can obtain three sets of adjusted values 
reflecting the variation due to machines and five sets of adjusted  values reflect-
ing the variation due to the different days of the week. Note that the degrees 
of freedom associated with the variances are reduced by this substitution of 
mean values. The variance of F has only two degrees of  freedom because only 
three mean values are being used, despite the fact that there are ninety data.
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The breakdown of the overall variance can be taken further. There are 9 sets 
of data which include the variation due to factories and machines. These are 
the 9 columns in the table. By again substituting the set mean value for each 
value in the set, a variance can be calculated. By removing the already obtained 
separate effects of factory and machine, we are left with a variance relating 
to interaction between factory and machine. That is to say, the behavior of 
the corresponding machine depends to some extent on which factory it is 
located in.

There are 15 sets of data that include the variation due to machines and days, 
and 15 sets of data that include the variation due to days and factories. There 
are 45 sets of data, albeit only 2 values in each set, that include the variation 
due to factories, machines, and days; and, finally, there is the complete set of 
90 values that additionally includes variation due to other factors and random 
effects. Each set of values can in turn be temporarily modified by substituting 
the mean of the set for each member value, and the variance can be adjusted 
by removing the single factor effects, leaving the variance attributable to the 
interaction.

I must add that this is not the way one would actually carry out the  
calculations—as you would probably use a computer package—but it is a way 
of seeing what in effect is being done.

The results of all this can be laid out as follow:

Source of Variation Variance Degrees of Freedom

Factory, F 0.41 2

Machine, M 5.34 2

Day of Week, D 0.64 4

Interaction F-M 0.45 4 (2x2)

Interaction M-D 1.08 8 (2x4)

Interaction D-F 0.73 8 (4x2)

Interaction F-M-D 0.29 16 (2x2x4)

Residual 1.12 45 (89–16–8–8–4–4–2–2)

Total 89

The residual variance is a measure of the variation that would be observed in 
the absence of any effect arising from the particular factory, particular machine, 
or particular day of the week. In other words, random or unknown effects are 
producing a variance of this size. We can therefore test whether any of the 
other variances are significantly greater than the residual variance. The test to 
use is the variance ratio test, F-test. In the above example, only one variance 
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is greater than the residual variance: the variance due to machine. So, this is 
the only one that needs testing. The variance ratio is 5.34/1.12 = 4.77, which 
is found to be significant at the 5% level. A relevant extract from the tables of 
the F-statistic is shown as follows:

Significance Level 5% Degrees of freedom of  
the smaller variance

Degrees of freedom of the larger 
variance

1 2 3

30 4.17 3.32 2.92

40 4.08 3.23 2.84

60 4.00 3.15 2.76

Thus we can conclude that the variation between machines is likely to be a 
real effect. We can also conclude that there is no significant evidence that 
overheating is more prone in one factory than another, nor that overheating 
is related to the day of the week.

Two additional points need to be mentioned regarding interactions. First, if an 
interaction is found to be significant, then the main factors in the interaction 
cannot be tested. The situation has to be investigated further. Second, if the 
interactions are not significant, then their variances are an additional mea-
sure of the residual variance. They can therefore be pooled with the residual 
variance.

By pooling some of the variances that are not significant, we can gain further 
appreciation of the versatile nature of the analysis of variance. Pooling the D, 
M-D, D-F, F-M-D, and residual variances gives a value of 0.89 for the revised 
residual variance. The results now appear as follow:

Source of Variation Variance Degrees of Freedom

Factory, F 0.41 2

Machine, M 5.34 2

Interaction F-M 0.45 4  (2x2)

Residual 0.89 81 (89–4–2–2)

Total 89

The point of interest here is that if we had, at the outset, decided that the 
day of the week was unlikely to have any effect on the results, we could have 
treated the values obtained on different days as replicates. Thus we would 
have had 9 combinations of factory and machine and 10 data for each com-
bination. The analysis would have been in terms of two main effects, F and M, 
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and one interaction, F–M. The results would have come out exactly as shown 
above with a residual variance of 0.89.

It is useful to show the results of the machine overheating example by plot-
ting a number of graphs. The significant effect of machine type can be seen 
in Figure 16-1, where the mean overheating temperature for each machine is 
plotted against the machine number. Similar graphs for the two non-significant 
main effects are also shown. There is no reason why these graphs should have 
a particular shape: any appreciable departure from a horizontal line might 
indicate a significant effect.

Figure 16-1. Comparison of overheating of different machines in different factories on 
different days
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Latin and Graeco-Latin Squares
A version of analysis of variance uses Latin or Graeco-Latin squares, typically 
in agricultural experiments. If fertilizers are to be compared in terms of crop 
yield, for example, there is always the possibility that the fertility of the land 
used for the study may vary from place to place. Clearly, it is not possible to 
test all the fertilizers in the same place at the same time: each one is tested 
where the fertility may be different.

In the Latin square arrangement, the rectangular test area is divided into 
smaller plots, forming a grid of rows and columns. Each fertilizer is used once 
in each row and once in each column. Thus if we have four different fertilizers 
designated A, B, C, and D, the arrangement could be as follows:

Columns

Rows A B C D

B C D A

C D A B

D A B C

This corresponds to 16 data of the crop yield, 4 for each of the treatments  
A, B, C, and D. The crop yield is the dependent variable, and the fertilizer 
brand and soil fertility are the independent variables. The analysis of variance 
can be arranged as follows:

Source of Variation Variance Degrees of Freedom

Rows XXX 3

Columns XXX 3

Fertilizers XXX 3

Residual XXX 6

Total 15

The rows and columns variances reflect the variability in the soil characteris-
tics across and down the experimental area. Note that there are no variances 
listed for interactions. This is a consequence of the Latin square design. Only 
one fertilizer is applied to a plot of a given fertility, giving a considerable saving 
in the number of plots required. The actual number of combinations of fertil-
izer and soil fertility is 4 x16 = 64. The use of 64 plots would not be feasible: 
apart from the larger test area required and the extra cost, there would be 
additional variation in soil fertility because of the increased test area.
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An additional effect can be included by the use of a Graeco-Latin square as 
shown below. The Latin letters A to D represent four treatments, as before, 
and the Greek letters a to d represent a second treatment—pesticide, say:

Columns

Rows A d B g C b D a

B b A a D d C g

C a D b A g B d

D g C d B a A b

As in the Latin square, each fertilizer is used only once in each row and 
column. Furthermore, each pesticide is used only once with each fertilizer. 
Squares of different sizes can be set up, but the arrangement is not possible 
for a square of side 6.

Although the description has been in terms of agricultural experiments, 
because that is where the practical applications have mainly been, the squares 
can be used elsewhere. They are particularly useful when it is essential, for 
reasons of cost, time, or accessibility, to keep the number of observations to 
a minimum.

Medical studies often fall into this category. If it were required to investi-
gate four different treatments for an ailment, four suitable patients could be 
selected.  Suppose it takes one month to assess the effects of each treatment. 
The columns in the Latin square shown above would be the four treatments, 
and the rows would be four consecutive months. The letters A, B, C, and D 
would represent the four patients. At the end of one month, all four treat-
ments would have been tested; and after four months, there would be 16 sets 
of data representing the outcome of each treatment administered to each 
patient.

It can be seen from this medical example that the Latin square can be a very 
efficient means of investigation, particularly when interactions between the 
main effects are not considered likely. If there were to be appreciable interac-
tions, the effect would be to increase the residual variance and make it more 
difficult to verify any significant difference between the treatments.

The Latin square can be modified by removing a row or a column. The result-
ing rectangular arrangement is known as a Youden square.
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TIRE TRIALS

As chief accountant for ZIP Deliveries, Mark Groves was always looking for ways to 
cut back on expenditure. The company ran a parcel delivery service and had a fleet of 
about forty vans. The field was very competitive and costs were important.

Tires for the vehicles cost an appreciable amount, and that was what Mark was currently 
considering. At present the company was purchasing a cheap brand of tire, but perhaps 
it would pay to use a more expensive brand and achieve a longer life.

Three other brands were readily available, and Mark proposed an experiment to compare 
them with the brand currently being used. He had in mind a Latin square arrangement. 
Four vans would be fitted with new tires, each van with a different brand. The four vans, 
each with its regular driver, would constitute the columns of a 4 × 4 Latin square. Four 
daily routes, each of similar distance but, of course, different road conditions, would 
constitute the rows of the square.

For the experiment, each van would spend a month working each of the designated 
routes. The tire wear would be recorded by measurements of tread depth carried out by 
the garage maintenance team.

The Latin square arrangement ensured that the effect of the four different drivers and 
the effect of the four different routes would be separated from the effect of the different 
brands of tire.

Having got approval for the experiment, Mark took a standard 4 × 4 Latin square, put 
the columns in a random order, put the rows in a random order, and allocated the four 
brands to the lettered squares A, B, C, and D. This provided the schedule for the routes 
for the four vans, and the trial went ahead.

At the end of the trial period, Mark analyzed the results. He found that the variance  
due to the vans was not significant. The variance due to the routes was significant  
at the 5% level, which was perhaps not too surprising. Importantly, the variance due to 
the tire brands was significant, well inside the 5% level. Thus the difference between the 
different brands could be accepted as being real.

For each of the brands, Mark used the tire-wear values and the cost to calculate which 
brand would be most cost effective. It turned out to be one of the more expensive ones, 
so the exercise had not been a waste of time, much to Mark's relief. It was decided that 
the tire contract would be changed accordingly, and Mark had a smile on his face for 
the rest of the day.
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Multidimensional Contingency Tables
You saw in Chapter 15 how the association between two descriptive variables 
can be compared by means of a contingency table. If we have more than two 
variables, we have in effect a table with three or more dimensions. Such tables 
can, of course, be laid out as several two-dimensional tables; but in order to 
explain how to proceed, it is useful to emphasize the multidimensional nature 
of the situation by attempting to give a perspective view of a  three-dimensional 
one. This has been done in Figure 16-2.

Figure 16-2. A three-way contingency table

The three independent variables are place of birth, color of hair, and color 
of eyes, and the dependent variable is the number of cases. The task is again 
to replace the actual sampled values temporarily with expected values based 
on the assumption that there is no significant effect from the variables. The 
values, in other words, are not significantly different from values that would 
be obtained from the overall proportions of each category. However, unlike 
the situation where we had only two variables, there is not a unique expected 
value. Judgment is needed to fix the best expected value.
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To see where the problem lies, consider the table for blue eyes extracted 
from Figure 16-2. The expected values are as follow:

Expected Values

Eyes Blue Hair Hair Total
Brown Black

England 7.6 3.4 11

Scotland 3.4 1.6 5

Total 11 5 16

For example, 7.6/11 = 3.4/5 = 11/16.

If we now look down from above on our three-dimensional table, the top 
layer appears as follows:

England Hair Hair Total
Brown Black

Eyes Brown 3 1 4

Eyes Blue 9 2 11

Total 12 3 15

And if we calculate the expected values, we get the following:

Expected Values

England Hair Hair Total
Brown Black

Eyes Brown 3.2 0.8 4

Eyes Blue 8.8 2.2 11

Total 12 3 15

For example, 3.2/12 = 0.8/3 = 4/15.

Our expected value for England – Hair Brown – Eyes Blue is now 8.8, whereas 
our first calculation of expected values gave 7.6. The reason, of course, is that 
the first value is expected if Brown Eyes are excluded, and the second value 
is expected if Scotland is excluded. The same problem arises for each of the 
eight combinations of place of birth, hair color, and eye color.
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The analysis that is used in these situations to overcome the problem is called 
log-linear. It is a lengthy iterative procedure that makes repeated estimates 
of the expected values and is thus computer intensive. The “log” in the title 
refers to the fact that the logarithms of the values are used to give additive 
properties in the processing. The technique is analogous to the analysis of 
variance shown earlier for dealing with numerical data when several variables 
are involved. There you saw that not only was there a main effect from each 
variable but we had interactions from each pair of variables, each triplet of 
variables, and so on. You also saw that the use of variance allowed us to parti-
tion the variability between the main effects and the interactions. 

We have a similar situation here with our multidimensional contingency tables. 
Interaction here means, for example, that the effect of place of birth and hair 
color on color of eyes, acting together, is not the same as the sum of the 
effects acting separately. The processing involves an element of judgment. An 
approach from the top down would estimate the optimum expected values 
on the basis of three main effects. If the residual variability were too great, as 
indicated by its level of significance, the second-order interactions would be 
included, and so on. In the example, the third-order interaction involving all 
three variables cannot be dealt with, because the values as they were sampled 
may be the expected values. If we had a duplicate sample, the third-order 
interaction could be isolated from the residual variation. The example given 
in the “Analysis of Variance” section involved a duplicate sample and allowed 
this separation.

An alternative direction of processing is from the bottom up. Starting with the 
inclusion of all main effects and interactions, the significance of the highest-
order interactions is checked. If not significant these interactions are removed 
from the activity of estimating the expected values. This continues until the 
only effects remaining are those with an acceptable level of significance.

A variation of log-linear analysis is logit analysis. This allows the use of a 
dependent variable that is not numerical but can take one of two descriptive 
labels: male or female, for example. The proportion of males (or females) is 
restricted to values between 0 and 1. The logit, or log odds, function transforms 
the proportion to a value having an unlimited range from minus infinity to plus 
infinity.

Multivariate Analysis of Variance
An extension of the analysis of variance (ANOVA) is the multivariate analysis 
of variance (MANOVA). You saw that the analysis of variance was able to deal 
with multiple effects but only when we had a single dependent variable and 
several independent variables. In multivariate analysis of variance, we are able 
to deal with several dependent variables.
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As an example, suppose the bakery departments of two supermarkets are to 
be compared. Three different products are involved: loaves, buns, and cakes. 
The two dependent numerical variables on which the comparison will be 
based are profit and customer satisfaction. The variables are thus as follow:

Supermarket A Supermarket B

Loaves Buns Cakes Loaves Buns Cakes

Profit xxx xxx xxx xxx xxx xxx

Satisfaction xxx xxx xxx xxx xxx xxx

For each level of each variable there will be a data sample, represented by 
xxx above. As the number of data groups increases, the need for large sample 
sizes increases. Each group must have a size greater than the number of vari-
ables and should have not fewer than about 20 data.

In the analysis of variance, partitioning of the variance produces values of the 
variance ratio, F, which can be used to evaluate the effect of each independent 
variable on the dependent variable. In multivariate analysis, we use a corre-
sponding statistic to evaluate each effect on each dependent variable. There 
are a number of possible statistics: Wilks’s lambda, the Hotelling-Lawley trace, 
the Pillai-Bartlett trace, and Roy’s maximum root. The effect of interactions is 
examined first, as in the analysis of variance. If an interaction is found to be not 
significant, the constituent variables can each be tested for significance.

The processing is complicated and may involve additional routines to ensure 
reliability of the results: hence the need for a suitable computer package. 
Underlying statistical assumptions regarding the data also may have to be 
examined. The interpretation of the results needs considerable care. Because 
there are potentially many effects to be identified, the power of the test—that 
is, the ability to detect a relationship when it exists—may be low. In order to 
ensure that the power is sufficiently large to identify small effects, the required 
sample size may be prohibitively large.

Conjoint Analysis
Conjoint analysis is used to investigate customer evaluations of products or 
services. It differs from other techniques in that the investigator sets up at 
the outset combinations of features representing real or hypothetical ver-
sions of the product. These are the independent variables. Thus the sampled 
consumers merely rank the combinations rather than create variables by the 
nature of their replies. For example, a deodorant could be produced in the 
form of a roll-on, a pump spray, or an aerosol, each in one of three colors of 
container, and each in one of two sizes. This would give a total of 18 possible 
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combinations. The three independent variables—form, color, and size—are 
descriptive, and the dependent variable is the preference of each combination 
as recorded by its rank order. 

From the rankings supplied by each sampled consumer, the part-worth of 
each factor can be evaluated, taking account of interaction effects. It is not 
necessary to present each respondent with all combinations: a selection can 
be used to provide data for evaluation. A feature not present in most other 
methods is that an evaluation can be obtained for a single respondent. Results 
from several respondents can be aggregated to provide an overall assessment 
of the separate attributes of the product or potential product.

Proximity Maps
Association between descriptive variables can be visually presented by means 
of a map on which the degree of association between two items is repre-
sented by the distance between them. Greater degrees of association are 
indicated by closer spacing. Two- or three-dimensional maps can be shown 
as diagrams, of course, but if more than three dimensions are involved, only 
“slices” of the map can be visually appreciated.

Correspondence analysis is one such method. The data is represented in 
a contingency table, as discussed in Chapter 15 and the “Multidimensional 
Contingency Tables” section of this chapter. The analysis follows the proce-
dure we described for multiway contingency tables in obtaining an expected 
value for each cell on the basis of no association. The difference between 
each actual and expected value is expressed as a value of the chi-squared 
statistic, which provides a measure of association. Distances for mapping are 
then computed in relation to the chi-squared values: the larger the value, the 
smaller the distance.

To illustrate the method in a simple manner, we can use the two-way contin-
gency table from Chapter 15 that related color of hair to place of birth. The 
table is repeated here:

Observed Numbers

Hair Color

Place of Birth Brown Black Blonde Total

England 11 2 4 17

Scotland 5 8 0 13

Wales 4 5 1 10

Total 20 15 5 40
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The expected numbers, on the basis of there being no association, were  
calculated as follows:

Expected Numbers

Hair Color

Place of Birth Brown Black Blonde Total

England 8.50 6.38 2.13 17

Scotland 6.50 4.88 1.63 13

Wales 5.00 3.75 1.25 10

Total 20 15 5 40

The statistic chi-squared is equal to the square of the difference between the 
expected and observed values, divided by the expected value. It is calculated 
for each cell in the table as shown below. (Negative values, when the observed 
is less than the expected, are treated as positive in calculating the chi-squared 
totals.) 

Hair Color

Place of Birth Brown Black Blonde Total

England 0.74 3.00 (neg) 1.65 5.39

Scotland 0.35 (neg) 2.00 1.63 (neg) 3.97

Wales 0.20 (neg) 0.42 0.05 (neg) 0.67

Total 1.28 5.42 3.33 10.03

These values provide a measure of similarity for each pair of variable  
levels, the largest values representing the largest positive association. Negative  
values represent negative association. (It may be noted that the sum of the 
above chi-squared values, 10.03, was used in Chapter 15 to show that there 
was a significant relationship between hair color and place of birth.) 

Similarity

Hair Color

Place of Birth Brown Black Blonde

England +0.74 –3.00 +1.65

Scotland – 0.35 +2.00 –1.63

Wales – 0.20 +0.42 – 0.05
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We can use the similarity values to produce a map. Each of the nine values 
provides a distance that is used to separate the pair of variable levels: the 
larger the value, the smaller the distance. Figure 16-3 illustrates an approxi-
mate arrangement. Scotland-Black has the top position in ranking and the 
smallest separation, whereas England-Black has the bottom position and the 
largest separation. The map shows various degrees of association. Brown and 
blonde hair are closely associated with English individuals, whereas black hair 
is associated more so with Welsh and Scottish people. You will appreciate that 
the separations cannot be exactly as required: there has to be compromise to 
fit the variables together. In a practical application, a computer package would 
apply an iterative procedure to optimize the fit.

Figure 16-3. A map showing association between hair color and place of birth

The maximum number of dimensions that can be used is one less than the 
fewest number of levels for either variable: in this case, two. A realistic study 
might have more variables, each with more levels, and hence a map with a 
greater number of dimensions. To obtain the optimum set of distances that 
provides a consistent arrangement then requires a lengthy iterative procedure 
and is feasible only with the aid of a computer program.

Multidimensional scaling is similar to correspondence analysis in employing a 
multidimensional map to reveal association. It differs in that the variables are 
not defined at the outset; it is more a case of establishing the underlying 
variables from the analysis of the sample data. The technique represents per-
ceived similarities or preferences between entities as the distances between 
them on a map. For example, six kinds of breakfast cereal could be compared 
two at a time by each volunteer in order to provide a sample. The com-
parison could be on a scale of 1 to 10, say. Six items produces 15 pairs for  
comparison; and to map the items in a consistent manner, with regard to  
correct relative separations, several dimensions are likely to be required for 
the map. Procedures for optimizing the mapping positions while minimizing 
the number of dimensions require judgment and repeated calculations.
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The resulting map dimensions provide information as to the underlying fea-
tures that prompt the recorded perceptions. It may be that degree of sweet-
ness appears to lie along one dimension while “crunchiness” lies along another. 
It will be appreciated that considerable judgment is required in the interpreta-
tion. A feature of the method is that each respondent provides a sample which 
can be individually analyzed. Individual analyses can, of course, be aggregated.

Structural Equation Modeling
In the methods for dealing with multiple effects that have been discussed so far 
there has always been the limitation that there has been a single relationship 
between the dependent and the independent variables. It is sometimes the 
case that several interrelated relationships need to be established simultane-
ously. Structural equation modeling can be used when confirmation of a theory 
of such relationships is sought, but it is not useful at the exploratory stage.

A model based on theoretical judgments is set up, consisting of a number of 
variables linked by (assumed) causal relationships. Thus if we are concerned 
with the reputation of a school, for example, we may propose that success 
in examinations (a) depends on student ability (b) and teaching quality (c). 
Teaching quality depends on quality of teachers employed (d) and available 
resources (e). Quality of teachers employed depends on success in examina-
tions and location (f). Student ability depends on available resources and loca-
tion. In symbols, we have

a = w1b + w2c

c = w3d + w4e

d = w5a + w6f

b = w7e + w8f

where w1 … w8  are weights to account for different degrees of influence. In 
effect, we have something similar to a set of multiple regression equations that 
are interrelated.

The processing is complex and not unique. It involves path analysis and is 
related to factor analysis and regression. The method has the ability to 
encompass latent variables that are not directly measured but that emerge 
from the measured variables. To achieve satisfactory results requires much 
care in setting up the initial model, establishing an acceptable goodness of fit, 
and interpreting and modifying the model. 
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Association: Some Further Methods
Some practical situations, like the example in the previous section  concerning 
the reputation of a school, involve variables that are not only descriptive but 
subjective and difficult to define precisely. The levels adopted by the  variables 
may also be subjective and difficult to define. Furthermore, there may be many 
such variables of interest. Such situations arise in marketing and product 
development. Hair brushes may vary in size, shape, color, shape of handle, feel 
of handle, and so on. Customer evaluation of the brushes may involve comfort 
in use, effectiveness in brushing, aesthetic appeal, and more. In sociology or 
psychology studies, attitudes and opinions can range between extremes with 
no clear means of scaling the in-between values. Degrees of friendliness, luck, 
ambition, pain, happiness, and so forth are difficult to scale.

Methods are available that can assist in reducing variables and their levels by 
identifying significant similarities. Many of these are interdependence methods 
in that there is no distinction between dependent and independent variables. 
The mathematics involved is usually complicated and requires considerable 
background knowledge. Furthermore, the planning of appropriate procedures 
and the interpretation of the results needs care.

Factor analysis is a method of analyzing relationships among a large  number 
of variables in order to represent the data in terms of a smaller number 
of  factors. All the variables are treated on an equal footing: there is no 
 distinction between dependent and independent variables. As an example, we 
might  consider customers’ assessments of a dental practice under a  variety 
of headings such as ease of booking an appointment (a), availability of  suitable 
time slots (b), time spent in the waiting room (c), friendliness of staff (d), 
efficiency of staff (e), quality of treatment (f), and so on. Each assessment 
would be numerical, on a scale of 1 to 10, say. The correlation between each 
pair of variables would be determined, the six variables listed giving rise to 
15 correlations. From these, an optimum grouping of the variables would be 
found, minimizing the variance within the groups and maximizing the variance 
between groups. It might be established, for example, that three groups— 
(a)-(b)-(c), (d)-(e) and (f) in the example above—adequately provide the 
required assessment. A similar method is principal components analysis.

Cluster analysis is similar to factor analysis but is used to group entities, rather 
than variables. The entities resemble each other in showing similar attributes. 
The characteristics of the clusters are not defined at the outset but arise in 
the process. People might be grouped according to their personal features or 
characteristics. The process is equally applicable to all kinds of things, such as 
cars, birds, or hats, for example. 
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In multiple discriminant analysis, groups are defined, and the process locates 
items in the appropriate group while maximizing the probability of correct 
location. The technique deals with a single descriptive dependent variable and 
several numerical independent variables. For example, the technique might 
be used to separate potential customers from unlikely customers based on 
several numerically designated characteristics.

This brief overview of methods for dealing with multivariate data is by no 
means exhaustive. The availability of computers that can perform iterative 
procedures at incredibly high speeds has given statisticians the means of 
employing and developing methods with greater and greater sophistication.



Forecasts
Prediction is very difficult, especially about the future.

—Niels Bohr

So far we have been examining the use of statistics in describing present or past situations. Usually, 

of course, we gain such understanding in order to make decisions for the future—in other words, 

we are interested in forecasting. In this part, we shall see the ways in which statistics can help  

in forecasting.

VI
P A R T  



Extrapolation
Malthus Got It Wrong

Thomas Malthus, an English cleric, economist, and statistician, is known for his 
theories on population growth. He wrote in 1798 in his Essay on the Principle 
of Population that, because population increases geometrically (1, 2, 4, 8, …) 
and food increases arithmetically (1, 2, 3, 4, …), the population would eventu-
ally outstrip food supply. He warned of premature death visiting the human 
race. The onset of disaster would be prevented only by epidemics, pestilence, 
plague, famine, and preventive measures. His numerous writings on the subject 
gave rise to the Malthusian doctrine.

This doctrine is based on an extrapolation; and because it was proposed a 
long time ago, we can see that it was unjustified. It is relevant at the present 
time in providing us with a striking example of the dangers of extrapolation.

No one knows what tomorrow will bring. No one can predict the future with 
certainty. Of course, some events we can be fairly sure of: no one doubts that 
the Sun will rise tomorrow, but this is not the kind of event that statistics 
is asked to give a judgment on. Statistics is based on observations and mea-
surements that relate to the past, but the purpose of statistics, apart from 
providing interesting historical facts, is to attempt to predict the future. Every 
shopkeeper who orders goods from his suppliers is indulging in forecasting. 
How can he be sure how many customers he will have tomorrow?

In the Mega Millions lottery, each number has an equal chance of being drawn. 
Although a few individuals may have doubts, most people would accept that 
this is true. In spite of this underlying knowledge, many people think a degree 
of forecasting is possible. They argue that each number will eventually appear 
the same number of times. In fact, the probability of each number being drawn 
exactly the same number of times is small, although the number of appearances 
of each number is likely to be approximately the same. If number 23, say, is 
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lagging behind in number of appearances, some forecasters conclude that 23 
now has a greater chance of being drawn. Others, perhaps, with a more cynical 
view, argue that there must be a reason why 23 is appearing less frequently 
and conclude that the trend is likely to continue. I happen to have a penny 
that I have tossed five times, and it has given five heads. Would anyone like to 
purchase it? It could win a fortune on its next toss! Our two groups of fore-
casters would, however, disagree about whether the next toss would result in 
a head or a tail.

Statistics alone cannot provide reliable forecasting. Common sense and judg-
ment are needed, but both of these involve a degree of subjectivity. Objectivity 
is what is ideally required, and statistics can contribute in providing objective 
analyses. Forecasts based solely on subjective judgments can be useless or 
even disastrous. The gambling industry thrives on the fact that people are 
generally not very good at making forecasts. Suppose a successful jockey has 
not had a win in his last four races. Some would therefore be tempted to 
predict a win in his next race. Others would offer the alternative argument 
that his poor present performance is likely to continue. This situation has 
parallels in the business world. If the number of customers was unusually low 
today, does that allow us to say that tomorrow will bring extra customers to 
keep up the average, or does it allow us to argue that the trend will continue 
and produce fewer customers?

Forecasting is an essential activity, and in spite of the difficulties and pitfalls, we 
have to accept that it is always going to be with us. Forecasting the future can 
be based only on knowledge of the past and present. In order to use existing 
data to predict what the corresponding data will be in the future, we have 
to employ extrapolation to some degree. This creates a serious problem at 
the outset. We can never be certain that the same circumstances will exist in 
the future, and we can therefore never be certain that our forecasts will be 
reliable. From a strict mathematical view, we should never extrapolate data 
beyond the limits within which the data was obtained. Thus, if we observe that 
the population of our town has grown by an average of 1,000 per year over 
the past 10 years, we would be unjustified in deducing that the next ten years 
will bring a further increase of 10,000. We might, of course, consider it reason-
able to bend the rule and assume that next year will bring an increase of about 
1,000, the degree of extrapolation being relatively small.

We can distinguish different degrees of extrapolation to allow judgments as to 
the reasonableness of the extrapolations we encounter. Starting with a trivial 
situation, if there is perfect correlation between two variables, we expect no 
problems with extrapolation. If we know the volume occupied by a kilogram 
of sugar, we can reliably forecast the space required to store 1,000 kilograms 
of sugar. If we know that £1 can be exchanged for $2, we can predict with 
certainty how many dollars we will get for £100.
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When a well-established scientific law relates a number of variables, it is 
possible to make reliable forecasts. The speed of a satellite circling the Earth 
is related to its height above the Earth, for example. If it were not for the ability  
to predict from such relationships, technology could not advance in the way 
it does. Of course, even well-used relationships have practical limitations.  
A spring extends in proportion to the weight applied to it, but if it is over-stretched 
the relationship changes.

Many laws, rather than being based on basic physical principles, are empirical 
and may have complex and changeable causes. The law of supply and demand, 
for example, can be justified experimentally and theoretically but may not 
always apply. Special circumstances can arise that upset expectations.



Forecasting 
from Known 
Distributions
Why Does the Phone Never Stop Ringing?

The normal distribution has featured prominently in previous chapters because 
it is found to appropriately describe the data obtained in numerous situations. 
If there is good reason to believe in advance that the normal distribution will 
apply, then predictions can be made regarding future observations. Many other 
distributions are found to apply in certain circumstances, and, in a similar way, 
these can provide useful estimates of future outcomes. This chapter describes 
several of the commonly used distributions and gives examples of their use 
in forecasting.

Uniform Distribution
Forecasting from a uniform distribution is a trivial procedure, but it is worth 
considering it briefly to outline the steps involved. The score obtained from 
the throw of a fair die follows a uniform distribution. Each score from 1 to 6 
has an equal probability of occurring. Figure 18-1 shows the distribution. The 
total area within the distribution is 1.0. If we wish to know what the probabil-
ity is of obtaining a 1 or a 2, we add the areas within these two blocks. Thus 
the probability is 1/6 + 1/6 = 1/3.

18
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This is all very simple, but it does put us in a good position to see what hap-
pens when we consider non-uniform distributions.

Normal Distribution
You have seen that the normal distribution is a continuous symmetrical distri-
bution with a central peak positioned at the mean value. The standard normal 
distribution has the central mean located at zero; the standard deviation, which 
controls the width of the distribution, has a value of unity. You also saw that 
the distribution describes the spread of data in many real situations, where 
there is a driving influence to render all the data the same but random errors 
from different and often unknown sources create a spread in the data.

Heights of people and their other physical dimensions—such as arm length, 
leg length, and so on—would be expected to be normally distributed. 
Manufacturers and retailers of clothing need information regarding future 
demand for clothes of different sizes. If the mean height and standard devia-
tion of army recruits, for example, is known from past records, it is possible 
to forecast the likely future situation and ensure that uniforms are available in 
appropriate sizes.

Suppose the mean height of recruits is 174 cm and the standard deviation is 
7 cm. We wish to know the proportion of recruits with heights between 180 
cm and 184 cm. This represents a vertical strip on the normal distribution 
(Figure 18-2), the area of the strip indicating the probability of values between 
these limits being encountered. We have to convert our values to standard 

Figure 18-1. A uniform distribution
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values so that we can use the published tables of the normal distribution, and 
we do this by calculating Z-scores, as we did in Chapter 10. For each of our 
limits, 180 cm and 184 cm, Z is equal to the difference between the limit and 
the mean value, divided by the standard deviation. For 180 cm, Z is 0.857; and 
for 184 cm, Z is 1.43. In effect, the Z-score expresses each limit in terms of 
the number of standard deviations it lies from the mean value.

Figure 18-2. Use of the normal distribution to predict the proportion of army recruits 
within a height range

Referring Z to the tables gives the required area—i.e., the probability—and 
the difference between the two areas, derived from the two limits, gives the 
proportion of recruits. The calculation is shown in Figure 18-2 and gives the 
result that 12% of recruits are expected to be within our selected range. An 
approximate value can be obtained more easily by using Figure 7-9. Entering 
A = 0.9 (for a Z of 0.857) and B = 1.4 (for a Z of 1.43) gives a probability of 
10%, which is approximately correct.
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Binomial Distribution
The binomial distribution was described in Chapter 11. Here we will recall 
its features and show how it may be used in forecasting. The distribution 
describes the probability of observing a particular event when there are only 
two possible outcomes. Thus, if we have a series of yes or no answers to 
a question, the distribution describes the expected number of yes (or no) 
answers, given knowledge of the average number of yes (or no) answers in 
the population. If we toss a coin a number of times, the distribution shows the 
probability of obtaining a given number of heads or tails.

If the population proportion is known from theoretical considerations (as in 
our coin-tossing example) or has been estimated from a previously obtained 
large sample, we can use this to predict the characteristics of subsequent sam-
ples. If the samples are large, the binomial distribution can be approximated 
by the normal distribution, and we can proceed as in the previous section. For 
the Z-score, we take the difference between our sample proportion and the 
population proportion, and divide it by the standard deviation. The standard 
deviation of a binomial distribution is the square root of the variance, the vari-
ance being np(1 – p), as you have seen previously, where n is the number of 
data in the sample and p is the population proportion.

If the sample is small, however, and the population proportion not approxi-
mately a half, the binomial distribution is skewed, as shown in Figure 11-1, 
and we have to proceed differently. To illustrate the procedure, consider the 
throwing of a die a small number of times. We will look at the probability 
of throwing a 3, so the two possible results are 3 or not 3. When we throw 
the die once, the probability of getting a 3 is 1/6 and the probability of not 
getting a 3 is 5/6. This is illustrated by the tree diagram in Figure 18-3, which 
will assist you in appreciating the results of further throws of the die. If we 
throw the die twice, the probability of two 3s is 1/36, the probability of one 
3 is 10/36, and the probability of zero 3s is 25/36, making the total probability 
36/36 (i.e., 1). Figure 18-3 includes the results of throwing the die three times 
and, additionally, shows the binomial distribution for each of the three stages. 
It is possible to calculate the results for any number of throws in this manner, 
but the calculations become tedious; it is customary to obtain the results by 
consulting published tables of the binomial distribution.
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Figure 18-3. Tree diagram showing the probability of obtaining a number of 3s in several 
throws of a die
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A practical situation would be in applying the knowledge that 5% of cars on 
the road have no registration. This will have been obtained from records or 
from a large sample. The police may then wish to consider stopping a number 
of cars at random to check for any that are unregistered. The probability of, 
for example, 1, 2, or 3 cars having no registration, in a random sample of 20 
cars, can be calculated using the same procedure that we used in the throwing 
of a die. For a sample size of 20 and a proportion of unregistered cars of 0.05, 
tables of the binomial distribution give the following probabilities.

Cumulative

Probability of 0 = 0.3585 Probability of 0 = 0.3585

Probability of 1 or fewer = 0.7385 Probability of 1 = 0.3773

Probability of 2 or fewer = 0.9245 Probability of 2=  0.1887

Probability of 3 or fewer = 0.9841 Probability of 3 = 0.0596

Probability of 4 or fewer = 0.9974 Probability of 4 = 0.0133

Probability of 5 or fewer = 0.9997 Probability of 5 = 0.0023

Probability of 6 or fewer = 1.0000 Probability of 6 = 0.0003

Total                = 1.0000

The probability of there being no unregistered cars in the sample is 36%, and 
this provides a useful guide for the proposed sampling arrangement. It may be 
decided, for example, that a larger sample size should be adopted to increase 
the probability of detecting at least one unregistered car. The results are shown 
in Figure 18-4 as a probability distribution. Note that tables of the binomial 
distribution give cumulative probabilities. The probabilities for individual num-
bers, shown in the final column above, are obtained by subtracting adjacent 
cumulative values. Thus, the probability of 2 unregistered cars is the difference 
between the probability of 2 or fewer and the probability of 1 or fewer.
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Instead of asking for the probability of a particular number of cars not having 
registration, we could ask how many unregistered cars, on average, we expect 
to find in a sample of 20. This is given by the expectation, which is equal to 
np, where n is the number in the sample (20) and p is the proportion (0.05). 
The expectation is therefore 1, a result that we might well have deduced at 
the outset.

Poisson Distribution
The Poisson distribution is relevant when we are dealing with events that are 
randomly scattered either in time or in space. The number of road accidents 
in a given period of time and the number of goals scored in a soccer match 
are examples of random events distributed in time. The number of defective 
links in a length of chain and the number of misprints on each page of a book 
are examples of random events distributed in space.

The best estimate of the population mean for a Poisson distribution is the 
sample mean, and the best estimate of the population variance is the sample 
variance. The variance of a Poisson distribution, surprisingly perhaps, is equal 
to the mean. When the mean value is large, the distribution approximates to 
the normal distribution, which can then be used for forecasting. If, for example, 
we knew that the mean number of telephone calls received by a switchboard 
per day is 200, we could proceed as in Chapter 10 by calculating Z-scores. 
Thus we could determine the probability of receiving as few as 100 calls in a 
day, say, or as many as 300.

Figure 18-4. Binomial probability distribution of the number of unregistered cars in a 
sample of twenty
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If, however, our concern was with the likely variation within shorter time 
periods, the mean number of calls would be small. The Poisson distribu-
tion departs seriously from the normal distribution when the mean is small, 
becoming extremely skewed. It is then necessary to consult tables to obtain 
the required probabilities. We might, for example, staying with our telephone 
calls, be interested in the number of calls received in each five-minute period, 
to reveal the extent to which callers might be kept waiting.

Suppose the mean number of calls in a five-minute period is 2.5. From tables 
of the Poisson distribution, we can read off the cumulative probabilities of 
various numbers of calls arriving in a five-minute period. Thus:

Cumulative

Probability of 0 = 0.0821 Probability of 0  = 0.0821

Probability of 1 or fewer = 0.2873 Probability of 1  = 0.2052

Probability of 2 or fewer = 0.5438 Probability of 2  = 0.2565

Probability of 3 or fewer = 0.7576 Probability of 3  = 0.2138

Probability of 4 or fewer = 0.8912 Probability of 4  = 0.1336

Probability of 5 or fewer = 0.9580 Probability of 5  = 0.0668

Probability of 6 or fewer = 0.9848 Probability of 6  = 0.0268

Probability of 7 or fewer = 0.9958 Probability of 7  = 0.0110

Probability of 8 or fewer = 0.9989 Probability of 8  = 0.0031

Probability of 9 or fewer = 0.9997 Probability of 9  = 0.0008

Total                 = 0.9997

The probability of a particular number of calls, shown in the final column,  
is obtained by subtracting adjacent cumulative values. Thus the probability  
of two calls is the difference between the probability of 2 or fewer and the 
probability of 1 or fewer. The probability distribution is shown in Figure 18-5.
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Exponential Distribution
The exponential (negative exponential, to be precise) distribution is related to 
the Poisson distribution. Again, it concerns random events distributed in time 
or space, but the times or distances between successive events are recorded 
rather than the number of events in a given extent of time or space. If instead 
of recording the number of telephone calls arriving in each given time interval, 
as we did in the previous section, we recorded the time between each pair 
of successive telephone calls, then the data would consist of numerical values 
distributed according to the exponential distribution. The exponential dis-
tribution is continuous, whereas the Poisson distribution is discrete, and it is 
extremely skewed having a maximum probability at zero. As with the Poisson 
distribution, the variance is equal to the mean.

Figure 18-6(a) shows the exponential distribution of the time between succes-
sive telephone calls received, on the assumption of a mean time between calls 
of 2 minutes. This is equivalent to the rate of arrival of 2.5 calls in 5 minutes, 
which was used in the illustration of the Poisson distribution in the previous 
section. Because the time axis is continuous and not discrete, probabilities are 
obtained by evaluating areas under the curve. This was the procedure you 
saw to be necessary when using the normal distribution. Available tables, of 
course, remove the need for the rather complicated calculations.

In Figure 18-6(b), the cumulative probability is shown. You can see that shorter 
time intervals between calls are much more likely than longer time intervals. 
The probability of the interval being less than one minute is almost 40%. 
Nearly two thirds of calls are spaced at less than two minutes, though two 
minutes is the mean spacing.

Figure 18-5. Poisson probability of the number of telephone calls in a five-minute period
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Geometric Distribution
The geometric distribution is relevant in situations where a number of 
attempts are made before success is achieved. Many games and sports, for 
example, are based on minimizing the number of attempts to hit a target or 
to throw a six. As with the binomial distribution, it is possible to construct 
the geometric distribution by combining probabilities. We can illustrate this 
by considering the achievement of a six when throwing a die.

Figure 18-6. Negative exponential distribution showing the likely spacing of telephone calls
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Because the chance of throwing a six is 1/6, this is the chance of achieving 
success on the first throw. If success is not achieved until the second throw, 
the first throw must have been not a six, which has a probability of 5/6.  
The second throw yields a six with a probability of 1/6. The combined  
probability—that is, the probability of success at the second attempt—is  
5/6 × 1/6 = 5/36. This is the application of the “and” rule: a not-6 and a 6.  
If success is not achieved until the third throw, we have to combine two 
not-6s with a final 6. Thus the probability is 5/6 × 5/6 × 1/6 = 25/216. These 
probabilities can be seen in the tree diagram of Figure 18-3, which we used in 
discussing the binomial distribution. Notice that the probability decreases as 
we consider each subsequent throw. The probability of success at each throw 
remains constant, of course, at the value of 1/6; but success at later throws 
requires failure at the preceding throws, and these failures involve a probability  
of occurrence.

As with the exponential distribution, to which it is related, the geometric 
distribution is extremely skewed, having a maximum probability at the first 
attempt. The geometric distribution is discrete, whereas the exponential  
distribution, as you saw, is continuous.

As a practical example, consider a door-to-door salesman. It is known from 
company records that the probability of making a sale at a house is 1/10. This 
is sufficient information for the following list to be constructed:

Cumulative

Probability of sale at 1st call = 1/10 = 0.1000 0.1000

Probability of sale at 2nd call, but not before = (9/10) x 1/10 = 0.0900 0.1900

Probability of sale at 3rd call, but not before = (9/10)2 x 1/10 = 0.0810 0.2710

Probability of sale at 4th call, but not before = (9/10)3 x 1/10 = 0.0729 0.3439

Probability of sale at 5th call, but not before = (9/10)4 x 1/10 = 0.0656 0.4095

Probability of sale at 6th call, but not before = (9/10)5 x 1/10 = 0.0590 0.4685

Probability of sale at 7th call, but not before = (9/10)6 x 1/10 = 0.0531 0.5216

Probability of sale at 8th call, but not before = (9/10)7 x 1/10 = 0.0478 0.5694

Probability of sale at 9th call, but not before = (9/10)8 x 1/10 = 0.0430 0.6124

Probability of sale at 10th call, but not before = (9/10)9 x 1/10 = 0.0387 0.6511

The distribution is shown in Figure 18-7(a) as far as the tenth call. The  
distribution continues indefinitely: the salesman, poor fellow, may never get 
a sale, but the probability of not getting a sale after a large number of calls 
is very small.
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The cumulative values, which are shown in Figure 18-7(b), are probably of 
more interest to the salesman and to his company. These show the probability  
of a sale at the first call, or the second call, or the third call, and so on. The 
cumulative values approach the value of one as the number of calls increases, 
reflecting the fact that the probability of a sale increases with the number of 
calls and would become a certainty given an infinite number of calls.

Figure 18-7. Geometric distribution of the first success in a sequence of house calls
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Weibull Distribution
The Weibull distribution is a continuous distribution having a complex math-
ematical description. A shape parameter within the definition can take a range 
of values to give different forms of distribution. In one form the distribution is 
identical to the exponential distribution, while in another it approximates to 
the normal distribution.

The distribution is particularly useful in describing data that is positively 
skewed, having a peak at low values and tailing away to few but distant large 
values. Failure of components—for example, ball bearings—frequently follows 
this kind of distribution. Other applications include manufacturing and delivery  
times, and meteorological data such as wind-speed distributions. Extreme 
value theory, which deals with the low probabilities of unusual events—such 
as major floods, wildfires, freak waves, and large incomes—makes use of the 
Weibull distribution.



Time Series
Yesterday Rain, Today Rain, Tomorrow . . . ?

One of the most difficult areas of forecasting is in dealing with time series. 
Our profits have been x, y, and z over the past three years, so what will they 
be next year? Unfortunately, we might say, this is perhaps the area where  
forecasting is most necessary in the business and commercial world. In the 
United Kingdom, and probably elsewhere, documentation involving the sale of 
shares and other investment products has to carry the warning “past perfor-
mance is no guide to future performance.”

Regression
The problem is essentially to forecast data relating to the next time period 
from knowledge of the data from previous time periods. In Chapter 14,  
I explained the technique of regression analysis applied to relationships 
between two variables, and showed how a mathematical expression could 
be derived to describe the relationship. A time series can be treated as a 
relationship between two variables, and a mathematical relationship can be 
obtained using this technique. The relationship can then give predicted values 
for future times.

There are a number of problems associated with this approach. First, we will 
be extrapolating a correlation beyond the range of values within which it has 
been found to apply. Of course, as I have previously said, we have to extrapo-
late one way or another, and we are really looking for the least undesirable 
procedure. The second problem is that we are fitting the data to a straight 
line or a smooth curve with no justification. This is very different from the 
use of these correlation methods in establishing relationships between basic 
physical properties, which commonly vary smoothly with each other in line 
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with well-defined laws. The third problem is that we have no way of knowing 
for certain how accurate our forecast will be.

With regard to the accuracy of our forecast, we can argue that provided our 
extension into the future is modest, in relation to the extent of our past data, 
the error is unlikely to be great. We can also put a value on the maximum 
possible precision of the forecast values. We will know the reliability of the 
correlation, and this is a measure of the precision of the correlation’s estimate 
of the existing data points. The estimate of the future data points cannot be 
more precise than this, so we have a measure of the best level of precision to 
be expected. Put another way, the correlation cannot be better at forecasting 
future values than it is at predicting the known past values.

If you look back at the time series discussed in Chapter 14 and shown plotted 
in Figure 14-10, you will recall that a simple linear regression yielded a correla-
tion coefficient of r = 0.70. By using moving averages, the correlation coeffi-
cient was increased to 0.99. This indicates strong evidence for the rising trend 
indicated by the data, but the rising trend alone is of little value in forecasting 
the monthly performance in the short term. In the long term, there is the 
problem of having to extrapolate well beyond the range of the existing data.

Autocorrelation
Autocorrelation provides a means of examining whether there are  correlations 
between data from different times in the past. Pairs of data from different 
times are selected and compared. If the comparison shows a significant  
relationship, then there is evidence that the past values can be used to  forecast 
future values.

We would expect the daily temperature to bear some relation to the 
 temperature of the previous day. A correlation between the two over a 
 number of days would provide us with a basis for forecasting the next day’s 
 temperature. It would not be perfect but, it would have a degree of success. If 
we considered the average monthly temperature and produced a correlation 
with the value for the corresponding month of the previous year, we would have  
better success. Indeed, this is the approach used in setting up projected 
monthly temperatures for various locations.

Of course, not everything that we have to deal with has the repeatability of 
weather and climate, but recognizable cyclic variations are not uncommon in 
data relating to business activities. We can use the following data showing the 
monthly profits of a company, in thousands of dollars, say, to illustrate a practi-
cal application. The data are plotted in Figure 19-1(a).
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1.9 1.3 1.4 1.7 1.1 1.4 2.0 1.2 1.5 1.8 1.3 1.6

Figure 19-1. An example of autocorrelation
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A correlation between each value and the value for the previous month  
can be obtained by a simple linear regression analysis of the following two 
sets of data:

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Current 1.3 1.4 1.7 1.1 1.4 2.0 1.2 1.5 1.8 1.3 1.6

Previous 1.9 1.3 1.4 1.7 1.1 1.4 2.0 1.2 1.5 1.8 1.3

(one-month)

The equation of the regression line, following the procedure from Chapter 14, 
is calculated to be

Current = –0.45 × Previous + 2.16

and is shown plotted in Figure 19-1(b). The predicted value for the next 
month—January of the following year—is obtained by inserting the value for 
December of 1.6 for the previous month. The prediction is 1.4. This would 
not be reliable, because the correlation coefficient for the data is –0.49, which 
is not significant at the 5% level. (See Chapter 14 for a selection of significance 
levels for the product moment correlation coefficient.) That is to say, the  
gradient of the regression line, –0.45, is not significantly different from zero.

The possibility of a seasonal effect can be examined by using the three-month 
previous values. The two sets of data are now as follows:

Apr May Jun Jul Aug Sep Oct Nov Dec

Current 1.7 1.1 1.4 2.0 1.2 1.5 1.8 1.3 1.6

Previous 1.9 1.3 1.4 1.7 1.1 1.4 2.0 1.2 1.5

(three-month)

The equation of the regression line is calculated to be

Current = 0.79 × Previous + 0.33

which, with the value of 1.6 for the previous month (December), gives a 
predicted value of 1.6 for the next month (January). The data is shown in 
Figure 19-1(b). The correlation coefficient is 0.83, which is significant at the 
1% level. Clearly this is a better forecast than the previous one.
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Exponential Smoothing
In Chapter 14, we showed an example of a time series and described how 
the use of a moving average has a smoothing effect on the shape of the graph.  
If we assume that the undulations in the graph are due to random effects, 
rather than meaningful effects, we could decide that the graph of moving aver-
ages would provide a means of forecasting future values. To achieve some 
improvement, we could then take the view that the more recent data points 
are more relevant in predicting the future than the older ones. We could 
therefore apply a weighting procedure in calculating the moving averages. This 
thinking leads us to the method of exponential smoothing.

In exponential smoothing, the forecast values for the time periods are calcu-
lated successively starting with the earliest. The value for each next period is 
obtained by adding a proportion, a (Greek letter alpha), of the current value 
to a proportion (1 – a) of the previous similarly produced forecast value. The 
proportion a lies between 0 and 1: a proportion of 1 leaves the current value 
unchanged, and a proportion of 0 replaces the whole of the value with the 
previous value. The formula is

Ft+1 = aDt + (1-a)Ft

where  Ft+1 = forecast for the next period

 Ft = previous forecast applied to current period

 Dt = current actual value

 a = weighting factor

Because each forecast depends directly on the previous forecast, it conse-
quently depends on all previous forecasts, though the dependency is greater 
the more recent the forecast.

The following is a small example, using a weighting factor of 0.2, to illustrate 
the procedure. Supposed sales figures are shown for six successive periods. 
Also shown is the forecast value for the seventh period.



Chapter 19 | Time Series202

Period Sales Dt Forecast Ft Forecast for next 
period Ft+1

Error Ft – Dt Error squared

1 50

2 46 50.0 49.2

3 53 49.2 49.9 –3.8 14.4

4 52 49.9 50.4 –2.1 4.4

5 44 50.4 49.1 6.4 41.0

6 51 49.1 49.5 –1.9 3.6

7 49.5

Total 63.4

Mean 15.9

The error in each period is the difference between the actual sales figure, Dt, 
and the forecast, Ft, which was calculated from the previous sales figure. The 
overall error is usually quantified by the mean squared error.

In carrying out this procedure, we had to make two choices. First, we had to 
decide on the weighting factor. A large value gives more weight to recent sales, 
whereas a small value gives more weight to earlier sales. Second, because we 
had no previous forecast value, we had to decide what to use as the first value 
for Ft. The example used the value 50, this being the actual sales figure in the 
previous period.

To achieve an acceptable forecast, the overall error needs to be minimized; 
but with two somewhat arbitrary choices to be made, it is not easy to achieve 
this manually. There are, of course, computer programs readily available that 
can rapidly run through a range of scenarios to work toward a minimum 
mean-squared error.

The method as described is referred to as single exponential smoothing, just 
one weighting factor being used. The method works well when the data are 
approximately constant as time progresses and the up and down variations 
are random. In many situations, however, the data points will show a trend, 
either increasing or decreasing with time. Double exponential smoothing is then 
required. A second constant, b (Greek letter beta), is introduced to adjust for 
the trend in each previous interval. The first smoothing constant is applied 
to the trend-adjusted values in a way similar to that of single exponential 
smoothing.

In addition to trend, time series often show periodic variation which could 
be daily, monthly, seasonal or annual. To include effects of periodic variation, 
a third smoothing constant, g (Greek letter gamma), can be included to give 
triple exponential smoothing.
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Exponential smoothing is essentially a trial-and-error procedure but is readily 
dealt with by the computer software that is available. It is worth pointing out, 
however, that there are a number of variants of the method, so not all com-
puter programs produce the same results.

Notice that in exponential smoothing, unlike regression, no regard is taken of 
the expected shape of the fitted curve. The forecast is in essence based on 
the most recent value modified in accordance with how well each previous 
value would have forecast the next one in the series.

PLUMB WISE

Lawton Plumbing Supplies was located in an industrial park on the edge of the town. 
It was a small business run by the owner, Bill Lawton, supplying tools and plumbing 
consumables to local tradesmen and DIY enthusiasts. Kitchen and bathroom accessories 
were also stocked for sale to the general public.

Rising prices of copper and brass seriously affected the value of inventory, and much of 
it had become slow-moving because of the trend toward greater use of plastic pipework 
and fittings. Bill was nevertheless conscious of the need to retain his customers by 
always having what they needed in stock. He realized that his inventory control and 
forward-ordering practices were a mess and needed sorting out.

He talked to various colleagues about the matter, and it was suggested to him that he 
should spend some time examining his sales records and employ a rational routine 
guided perhaps by some form of time series analysis.

Armed with a book on statistics from the local library, Bill studied the possibilities. 
Because of the trend of decreasing copper and brass sales, and the increasing trend of 
plastic sales, he decided that exponential smoothing seemed to be useful. It promised 
the ability to deal with random fluctuations and an underlying trend. There might also 
be a benefit from the incorporation of a cyclic variation, because sales of pipework 
increased in the winter when many householders suffered from frozen pipes and 
central-heating faults.

At this stage, he needed help. Through his many contacts, he located a local IT expert 
who ran a computer repair business. For a modest fee, Bill had a suitable package 
installed on his computer and several short tutorial sessions.

Bill became quite fascinated by the process and used the technique to analyze sales 
records for much of his stock. He appreciated that the benefits would not be immediate 
but would improve with time, although it was quickly apparent that the system was 
recognizing the trends he was most concerned about. He was also shrewd enough to 
understand that no statistical analysis was going to give precise answers and that his 
practical experience in the business would still be required. Customer retention would 
always demand that safety margins be incorporated in his forward planning.



Control Charts
Navigating around the Factory

Quality control procedures are used in production processes to ensure that 
the products continue to meet the appropriate specifications. Usually, periodic 
sampling of the products is employed; and control charts, sometimes referred 
to as Shewhart charts, are used to record the results in order to anticipate the 
onset of problems in the production processes.

Two types of chart are in use, the choice depending on how the product is 
checked. If it is checked by a numerical measurement, the process is referred 
to as sampling by variable. If it is checked by observation of satisfactory or 
unsatisfactory features, the process is referred to as sampling by attribute.

Sampling by Variable
Most products that are produced to a specification have requirements for 
specific dimensions. Suppose, for example, a factory producing steel tubes 
with an internal diameter of 50 mm has an acceptable tolerance of ±1.0 mm. 
So tubes that are smaller in diameter than 49 mm or larger than 51 mm are 
defective and unacceptable. At the outset, measurements on large samples of 
tubes will have determined that the manufacturing procedures are producing 
tubes with a mean diameter of 50.2 mm, say, which is well within the toler-
ance. The samples will also have provided measures of the standard deviation, 
0.25 mm, say. The difference between the mean and the maximum permitted size 
is 0.8 mm, which is 3.2 standard deviations. From tables of the normal distribu-
tion, we find that 3.2 standard deviations either side of the mean will include 
all but 1 in 1000 observations. The company may accept that a rejection rate 
of about 1 in 1000 is acceptable. Reducing the rejection rate would involve 
increased costs in ensuring that the manufacturing processes gave more 
consistent output. Of course, depending on the type and cost of the product, 
other companies may settle for very different rejection rates.
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During production, samples will be taken periodically and the results recorded 
on the control chart. The samples will necessarily be small, perhaps consisting 
of five items. Figure 20-1(a) shows a typical layout of a control chart. On the 
vertical axis is a scale in mm, and the established mean value of 50.2 mm is 
shown as a horizontal line. Along the horizontal axis is a scale indicating the 
time or date of sampling. The mean value from each sample is plotted, and its 
relation to the target value of 50.2 mm can be readily appreciated.

Figure 20-1. Control charts for sampling by variable
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Either side of the 50.2 mm line are two more horizontal lines. The inner 
pair are the warning limits, and the outer pair are the action limits. If the 
sample means move toward one of the warning limits, the company will 
be forewarned of something amiss in the manufacturing processes and can 
instigate additional sampling or an investigation of the processes. Sample 
means reaching the action limits would indicate a serious problem. We shall 
shortly see how the warning and action limits are fixed.

Not only is it important to ensure that the mean value is being maintained, but 
it is also essential that the variability does not increase. In the lower part of 
the chart is a further set of horizontal lines to cope with variability. Again we 
have the target line, a warning line, and an action line. The target line could be 
set at the value of standard deviation, but because the calculation of standard 
deviation involves a degree of skill, it is common practice to use the range 
instead. The range from each sample can be easily recognized and plotted. 
The range of a series of values is related to the standard deviation, though it 
is a less precise measure of variability.

The warning limits are usually set so that there is about a 1 in 40 chance 
of the limit being reached on the assumption that the samples are still rep-
resentative of the original products. The action limits are usually set so 
that the corresponding chance is about 1 in 1,000. The calculation of the 
limiting values is complicated by two factors. First, the samples are small, so 
the t-distribution is required rather than the normal distribution. Second, 
because the range is being used, a conversion has to be made from standard 
deviation to range, and the conversion factor varies with the number of 
items in the sample. To circumvent these difficulties, control-chart tables 
are published giving values of A and D for different sample sizes, which are 
used in the following expressions:

Mean: Upper Action Limit = mean + A A x mean range

Mean: Lower Action Limit = mean – A A x mean range

Mean: Upper Warning Limit = mean + A W x mean range

Mean: Lower Warning Limit = mean – A W x mean range

Range:  Action Limit = DA x mean range

Range:  Warning Limit = DW x mean range

The tabulated values of A fix the limits such that six standard deviations of the 
sample mean, three each side of the mean, lie between the action limits, and 
four standard deviations, two each side of the mean, lie between the warning 
limits. The D values correspond appropriately.

In the example above, the expressions yield the following values, which are 
included in Figure 20-1(a):
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Mean: Upper Action Limit = 50.2 + 0.594 x 2.326 x 0.25 = 50.55

Mean: Lower Action Limit = 50.2 – 0.594 x 2.326 x 0.25 = 49.85

Mean: Upper Warning Limit = 50.2 + 0.377 x 2.326 x 0.25 = 50.42

Mean: Lower Warning Limit = 50.2 – 0.377 x 2.326 x 0.25 = 49.98

Range:  Action Limit = 2.34 x 2.326 x 0.25 = 1.36

Range:  Warning Limit = 1.81 x 2.326 x 0.25 = 1.05

The factor of 2.326 provides the conversion of the standard deviation of 0.25 
to the value of the mean range, for a sample size of 5.

It is important to note that the tolerance plays no part in the setting up of the 
control chart. The tolerance, together with the mean and standard deviation 
from the initial large sample, determine the likely proportion of unacceptable 
items that will result, on the assumption that the production processes will 
not change in any way. The purpose of the control chart is to signal changes 
in the production processes that may, if not attended to, lead to an increase 
in unacceptable items. The control chart provides statistical control of the 
processes separately from decisions regarding the number of unacceptable 
items that can be tolerated.

An alternative form of chart, the cumulative sum or CuSum chart, is sometimes 
used. The difference between the sample mean and the target mean is accumu-
lated, sample by sample, and plotted cumulatively, as shown in Figure 20-1(b).  
A change in gradient, either increasing or decreasing, indicates a departure 
from normal circumstances. An advantage of the chart is that small changes in 
mean show up more clearly than on a control chart.

Sampling by Attribute
Some products are either satisfactory or unsatisfactory and cannot be graded 
on a scale of defectiveness. Light bulbs, for example, either light up or refuse 
to. From what we have said previously, the situation will be recognized as a 
binomial one.

The periodic sampling must now involve larger samples than was the case 
with sampling by variable, discussed in the previous section. Clearly, a small 
sample would be likely to show no unacceptable items on a regular basis and 
would provide no useful information. Although the samples have to be larger, 
the checking of the items is likely to be much easier and quicker: checking a 
light bulb is more straightforward than measuring the diameter of a tube.

Suppose, staying with light bulbs, that the company accepts 1 defective light bulb in 
100; and suppose that the periodic sampling involves 50 bulbs. The control chart, 
shown in Figure 20-2, records the number of defective bulbs in the sample.
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On average, there will be 0.5 defective bulbs in each sample. We need to 
know the probability of there being 0, 1, 2, 3, … defective bulbs in a sample in 
order to set up a warning limit and an action limit. From tables of the binomial 
distribution, we obtain the following values for a sample size of 50 and an aver-
age level of defects of 1%.

Probability of 0 defective = 0.6050 =    60.50%

Probability of 1 defective = 0.3056 =    30.56%

Probability of 2 defective = 0.0756 =      7.56%

Probability of 3 defective = 0.0122 =      1.22%

Probability of 4 defective = 0.0015 =      0.15%

Probability of 5 or more defective = 0.0001 =      0.01%

Total = 1.000 =       100%

If the warning limit is set so that there is a 1 in 20 chance of the limit being 
reached, when there is in reality no change in the manufacturing processes, 
we require it to correspond to 5% probability. This arises between 2 and 
3 defective bulbs, so the limit would be set between these values. Similarly, 
for the action limit, a chance of 1 in 1,000 corresponds to 0.1%, so the limit 
would be set between 4 and 5 defective bulbs. These limits are included  
in Figure 20-2.

Figure 20-2. Control chart for sampling by attribute



Reliability
Would You Trust That Bungee Cord?

Statistics plays an important part in reliability studies but represents only a 
part of the mathematical theory involved. Reliability of a component, machine, 
or system can be defined as the probability that it will perform its required 
function in the desired manner under the operating conditions when it is 
required to so perform. Reliability, R, is thus a probability with a value between 
0 and 1, 0 representing immediate failure and 1 representing the (impossible) 
situation of never suffering failure. The probability of failure is 1 – R.

Basic Principles
Machines and systems consist of many components. Components themselves 
consist of assemblies of parts. Failure of a single part may lead to failure of 
a complete system, or perhaps not. A broken chain link causes failure of the 
length of chain, but failure of a single strand of wire in a wire rope does not 
lead to failure of the rope. Analyses can thus be seen to be complex because 
of the number of items involved and because of the ways that the items inter-
act in the functioning of the assembly. Simple systems can be analyzed using 
the rules of combining probabilities, and by looking at these we can appreciate 
what is involved.

In the case of the wire rope, suppose the probability of failure of one strand 
within the required operating period is 0.001. There are three strands in the 
rope, and the rope does not fail until all three strands fail. We have here a 
parallel situation: the three strands are physically parallel to each other and 
the failure mode is referred to as parallel. For failure of the rope, we require 
failure of the first, the second, and the third strands. This is an “and” situation; 
and as we saw in Chapter 3, the probabilities have to be multiplied together, 
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assuming of course that the failure of a strand is independent of the failure of 
other strands. Thus 0.001 × 0.001 × 0.001 = 0.000000001 is the probability  
of failure of the rope. It should be noted that these values are not realistic.

The chain links referred to above are physically in series, and we can represent the  
failure probabilities as a series. If the probability of failure of a link within  
the required operating period is 0.001, then, with three links, the chain fails 
if the first or the second or the third link fails. This is an “or” situation; and, 
again as we saw in Chapter 3, we need to add the probabilities. Thus the prob-
ability of failure of the chain (albeit only three links) is 0.003. The observant 
reader may have spotted that there is an error here. The three events are not 
mutually exclusive. We have not taken proper account of all the possibilities: 
two or all three links may fail. Furthermore, if we consider just one link failing, 
we have to include, by the “and” rule, the survival of the other two. With 3 
links, there is a total of 8 scenarios, which are listed here together with the 
probability of each:

Link 1 Link 2 Link 3 Probability

1 Not fail Not fail Not fail 0.997,002,999

2 Not fail Not fail Fail 0.000,998,001

3 Not fail Fail Not fail 0.000,998,001

4 Fail Not fail Not fail 0.000,998,001

5 Not fail Fail Fail 0.000,000,999

6 Fail Not fail Fail 0.000,000,999

7 Fail Fail Not fail 0.000,000,999

8 Fail Fail Fail 0.000,000,001

Total 2 to 8 (at least one link fails) 0.002,997,001

Two things are apparent from the tabled values. First, the probability of at least 
one link failing, shown by the total probability for scenarios 2 to 8, is extremely 
close to our originally proposed value of 0.003. This reflects the fact that 
when the probability of failure of a component is very small, the probability of 
two or more components failing in the same time period is even smaller—i.e., 
insignificant compared to the precision attached to the single-failure prob-
ability. In real situations, the failure probabilities are much smaller than in our 
simple example: a chain of several hundred links, with each link having a failure 
probability within the operational period as large as 0.001, would be quite 
useless. Thus, when the “or” rule is encountered in reliability situations, the 
individual probabilities can usually be added without loss of precision.
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The second point of interest from the above values is that the probability of at 
least one link failing can be more easily obtained by calculating the probability 
of all three links failing and subtracting this value from unity.

With assemblies of many components, there will be groups of series items 
and groups of parallel items, and these groups may be combined in series 
or parallel fashion with other groups. Figure 21-1(a) shows a hypothetical 
example of a sprinkler system consisting of power and water supply, sensors, 
relays, valves, and the sprinkler head. The analysis can be undertaken by means 
of a fault tree, shown in Figure 21-1(b). The various items are connected to 
show the reliance of each item on the functioning of others. The connections 
are labeled according to whether the reliance is series or parallel: in other 
words, whether the reliance is “and” or “or.” Starting at the bottom of the 
tree, we would insert the individual failure probabilities for the components. 
We would work upward, multiplying at the AND gates and adding at the OR 
gates. The final failure probability would be subtracted from unity to give the 
reliability.
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Items may be combined in ways that are neither series nor parallel. Figure 21-2(a) 
shows a bell that is activated by two parallel paths; but the addition of Z, as in 
Figure 21-2(b), renders the system neither series nor parallel (Smith, 1976: 66). 
X or Z ensures the activation of x, and Z or Y ensures the activation of y. X, Z, 
and Y are not in parallel since X does not activate y and Y does not activate x. 

Figure 21-1. A hypothetical sprinkler system and its fault tree
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Compare the diagram with that in Figure 21-2(c), which shows X, Y, and Z in 
parallel and as a unit in series with the parallel arrangement of x and y.

Figure 21-2. A diagram showing that some systems may be neither series nor parallel
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Some such arrangements can be dealt with by conditional probabilities that 
you met in Chapter 3. In our example shown in Figure 21-2(b), consider first 
the condition that Z fails (probability Pz). Then we have in effect the arrange-
ment shown in Figure 21-2(a), and we can calculate the failure probability (P1) 
in the normal way. Next, consider the condition that Z does not fail (probabil-
ity 1 – Pz). X and Y are now irrelevant, and we need calculate only the failure 
probability (P2) of x and y in parallel. Bringing the two situations together, 
there is now an “or” situation: Z fails, or Z does not fail. The failure probability 
of the system is therefore

PzxP1 + (1–Pz)xP2

and the reliability is one minus this value.

Reliability Data
We discussed sampling at length in Chapter 4, and our main concern there 
was to ensure that the sample was representative of the population of inter-
est. In reliability investigations this factor is still important, of course, but there 
is now an additional complication in that it is not easy to obtain the sample 
data. Some items, electronic components for example, are tested under ser-
vice conditions for long periods until failure. A mean time to failure (MTTF) is 
obtained and can be used in predicting the reliability of assemblies. A general 
application of this approach has severe limitations. For many items, testing 
times would be long and expensive, and creating realistic service conditions 
would be difficult. When expected service lifetimes are very long, there sim-
ply is not the time available to test to failure. Accelerated testing, involving 
excessive forces, speeds, or environmental conditions, for example, must be 
used, though this means that the service conditions are not being reproduced 
exactly by the testing conditions. Testing times can be shortened by testing a 
number of items simultaneously and curtailing the tests when a percentage of 
the items has failed. Testing complete assemblies to failure is often a better 
option, but time and cost have to be considered.

When testing to failure is out of the question, historical evidence can be used. 
Items that have been employed for some time will generate data on time to 
failure. In novel, complex structures, it is likely that many of the components 
will have a history of usage in other applications that will give some guidance 
as to their expected reliability.

Distributions
Many different distributions are made use of in reliability analyses. The  normal 
distribution may be appropriate for simple items failing in a well-defined man-
ner; but as items and components become more complex, it is found more 
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useful to assume that failure is a random event and that the probability of 
failure adopts a constant value. Thus the Poisson distribution, expressing the 
probability of a number of random events in a selected time period, and the 
associated exponential distribution, expressing the probability of specified 
time periods between random events, are used.

The Weibull distribution is often used. It was pointed out in Chapter 18 that 
this distribution has a deal of flexibility. It can describe a constant failure rate 
when failures are due to random events, and this is the likely situation during 
most of the lifetime of the assembly. There is generally a higher, but decreas-
ing, failure rate when the assembly is new. This is the burn-in period, and the 
distribution can be used for this decreasing failure rate. Toward the end of 
the useful life (the wear-out period), the failure rate increases, and, again, the 
Weibull distribution can cope.

Practical Complications
In practice, most machines and equipment are not run until failure. Inspection 
and maintenance are carried out, and parts can be replaced or refurbished 
before failure occurs. Clearly this complicates calculations of reliability. The 
use of standby systems and the practice of derating equipment add to the 
complications.

It was mentioned above that failure is commonly assumed to be a random 
event except during the burn-in and wear-out periods. The burn-in period 
may be virtually eliminated by pre-service running and rectification, and the 
wear-out period may be virtually eliminated by maintenance.

ALARM BELLS

Luke Rogers was self-employed, running a small business in burglar alarms. He bought 
in components, designed systems for domestic and small business properties, and 
carried out the installation. He gave his customers a guarantee for two years, during 
which time he would respond rapidly to rectify faults and replace any required parts. To 
provide cover following this period, he sold maintenance contracts that were renewable 
each year.

He was having a problem with a large number of service calls to customers during the 
guarantee period. The fault was with a relay that was failing, often only a few months 
after installation. He had been somewhat foolish in purchasing a job lot of these relays 
very cheaply. The cost to him of a service call was considerable in terms of travel and 
time, whereas the cost of the replacement relay was, of course, negligible. A hidden but 
serious cost was the deterioration in his customer relations.
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The solution seemed to be to scrap the stock of relays and purchase a batch of more 
expensive ones; but Luke’s daughter Louise, who was studying engineering at college, 
suggested that there might be a better option. She had some knowledge of statistics 
and knew about fault trees.

Using typical circuit diagrams of the installations and the data from the records of 
service calls, she produced an approximate fault tree. She could see that there were 
two relays in the circuit and they were effectively in series, so that if either failed, the 
system would shut down. The probability of either failing (an “or” situation) during  
the guarantee period, Louise calculated, was about 0.3. From this, she calculated that 
the probability of a single relay failing was 0.16.

Louise knew that components in parallel decreased the probability of failure (the “and” 
rule) and realized that if a pair of relays were wired together in parallel to replace the 
single relay, the probability of failure would decrease from 0.16 to 0.026 (i.e., 0.16 × 0.16). 
Replacing both single relays in the system in a similar way would give a probability 
of shutdown of the system of 0.052. The reduction of failure probability from 0.3 to 
0.052, an 82% decrease, was impressive. Luke immediately introduced the doubling 
up of relays on all service calls, maintenance visits, and new installations until the  
poor-quality relays had all been disposed of.

It was noticed by her friends that Louise had a rather expensive new smart phone for 
Christmas that year!



Big Data
I am one of the unpraised, unrewarded millions without whom Statistics 
would be a bankrupt science. It is we who are born, who marry, who die, 
in constant ratios.

—Logan Pearsall Smith

In the previous chapters, we have been concerned with small and large samples, the dividing line 

usually taken to be at about 30 data items. Now we need to discuss very large samples—not just 

somewhat larger, but enormously larger. The transition to what has become known as big data has 

not only introduced new methods and procedures but also created a new way of thinking about 

statistics. It has rapidly advanced from relying on limited sampling to a situation in which all of us, 

knowingly or unknowingly, are involved in providing vast amounts of data.

VII
P A R T  



Data Mining
Twenty-First-Century Gold Rush

Data mining is a means of producing predictive information from large amounts 
of data. It is one of the fastest growing methods of forecasting in the business 
world and is exciting in the prospects it offers for the future.

The Growth of Data
Storage of large amounts of data is not new: libraries have existed since ancient 
times. More recently, companies have kept details of suppliers, customers, and 
staff. Records of business transactions, of purchases and sales, of expenses and 
profits, and so on, were stored initially in books and files. Later, electronic stor-
age on databases gave considerable savings in effort and space. Such data have 
traditionally been used to provide information regarding the past and present 
positions of the company, but not as a tool for forecasting. This situation has 
changed as databases have become much larger and computers have provided 
faster processing and greater storage capacity. The often-quoted Moore’s Law 
says that computer capability doubles every two years or so. Without this 
phenomenal rate of growth, it would not have been possible to have the simi-
lar increases in the sizes of databases.

Databases have grown in two ways. If we visualize a database as essentially a 
two-dimensional table of data, the growth has been in the number of rows 
and the number of columns. Each row is an entry of new data, such as a new 
customer or a new sale or purchase. The numbers increase with time; and 
as storage becomes a decreasing problem, there is no pressure to eliminate 
older entries. The columns represent the variables: names, addresses, products,  
dates, etc. These have increased partly because, again, storage is no problem and 
partly because it has become easier to collect information. In retail activities,  
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the scanning of barcodes on each item purchased allows the transaction to 
be recorded, along with other items in the same purchase, the time and date, 
and how the payment was made. If the purchase was paid for by the use of a 
store credit card, or if a loyalty card was presented, the customer’s personal 
details can be recorded. The Internet has provided an enormous amount of 
data. Each click of a button or link adds to the store. Much of the information 
in databases has been accumulated simply because it became easy to collect 
and store it, not because it was seen to be needed.

Not only have databases grown, but the bringing together of many databases 
has produced data warehouses. A large company will typically have many 
databases. These might be at different company sites or used for different 
purposes at the same site. By linking the databases together, vast amounts of 
information are potentially available. In terms of computer storage, there are 
data warehouses as large as several petabytes. One byte is about the storage 
space of one character of text: a petabyte represents the information in all the 
books stacked along a bookshelf about 6,000 miles long.

The realization that not only could a great quantity of information be retrieved 
from data warehouses, but that it could reveal relationships between the different  
variables, gave rise to data mining. The revealed relationships could potentially 
provide a means of predicting future trends and opportunities.

The growth in available data accelerates each year. It is said that 90 percent 
of the data we had in 2013 did not exist three years previously. Onsite data 
warehouses became inadequate for the amount of data that large companies 
were accumulating. Cloud computing, in which the storage is undertaken by an 
external provider, came to the rescue. Organizations provided online storage 
and analysis of data for customers by using large networks of servers.

This was the start of what has become known as big data. There is no precise  
definition of big data: it means you have more data than you can handle  
yourself. For an organization such as Amazon or Facebook, that would be 
hundreds of petabytes, but it could be very much smaller for a small business. 
Big data could also be said to be data that cannot be handled by conventional 
database technology, either because there is too much of it or because it is 
unstructured.

Mayer-Schönberger and Cukier (2013) start their comprehensive account  
of big data with a useful indication of the amount of data involved. Google 
processes more than 24 petabytes of data per day. Facebook gets 10 million 
new photographs uploaded every hour, and users click a Like button or leave 
a comment nearly 3 billion times a day. Users of YouTube upload an hour of 
video every second. The number of messages on Twitter exceeds 400 million 
a day. Some estimates suggest that in 2013, about five exabytes of data were 
created in the world every few minutes (FT Reporters, 2013). This quantity is 
equivalent to the books on a bookshelf 30 million miles long.
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Big data is often described in terms of three features: the three Vs. In addition 
to volume, there are considerations of velocity and variability. Velocity refers to 
the speed at which the data can be collected, stored, and analyzed and the 
findings applied. The data is from past transactions, and the conclusions need 
to be applied quickly if they are to be used to predict future events. The vari-
ability of the data is a characteristic that presents difficulties in the manner of 
storage and in the subsequent analysis. Numerical data is easily dealt with by 
traditional methods; but unstructured data involving text recognition, transla-
tion, voice recognition, video clips, and music is less easy to handle. A fourth 
V is sometimes included, referring to veracity. Clearly, truth and reliability are 
vital if results of analyses are to be utilized.

Because the amount of data is very large, testing the revealed relationships 
can be extremely reliable. The relationships can be tested using blocks of data 
that have played no part in their development. Of course, when the relation-
ships are used to predict future events, there is still extrapolation. Anything 
may change in the future. It is important, therefore, to repeatedly revise the 
relationships and to apply the results without delay. For this reason, it is 
often better to make use of a readily obtained prediction rather than delay 
in searching for a more sophisticated one. Indeed, techniques have advanced 
from analyzing historical data to providing real-time results.

Data Warehouses
Data warehouses are produced by bringing together many databases of the 
traditional type, and we can look briefly at these to see how the assembled 
data warehouses differ. The traditional databases are transactional in that they 
allow operatives to input new data either automatically—from barcodes, for 
example—or manually. Operatives can also edit or delete data. Information 
from the databases is obtained by inputting appropriate queries.

The databases are normalized. This means the data are stored in many sepa-
rate tables in order to ensure that any datum is stored only once. For exam-
ple, the same supplier could be involved in many purchases, and it would be 
unwise to record the supplier’s details repeatedly for each purchase. Errors 
could arise within the repeated entries, and a change of address would cause 
problems in updating. The result is that a separate table is used for supplier 
details. There are further stages involved in normalization to minimize anoma-
lies and redundancies, and the final result is a multiplicity of tables linked in a 
fairly complicated network. The disadvantage of this kind of structure is that, 
when queries are required, the setting up and processing involved are rela-
tively slow. The situation is acceptable when the database is not very large but 
becomes an increasing problem as the database grows.
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The data from the databases are transferred to the data warehouse automati-
cally and periodically. No data are added or altered piecemeal by operatives, 
so the normalized structure of the database can be largely abandoned. This 
allows a star structure of tables, as shown in Figure 22-1, which has fewer 
links between the tables. The central table, called the fact table, contains the 
numerical or descriptive data. The surrounding tables are allocated to the 
variables of interest, and each table links directly to the central fact table.  
The arrangement is designed to speed up the retrieval of information.

Figure 22-1. The development of data mining from traditional databases
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In spite of these measures, the retrieval of information would not be accept-
ably fast without two further factors. One is the introduction of parallel pro-
cessing of the data. A computer can do only one operation at once, though 
because it can do so very quickly, it may seem that it is multitasking. If the 
speed of processing is inadequate because of the vast number of steps to be 
performed, speed can be increased only by adding further computers or pro-
cessors to work in parallel, simultaneously; and this is what has been done.

The second factor is the concept of cubes and hypercubes to allow automatic 
aggregation of data in readiness for retrieval. A diagram of a cube is included 
in Figure 22-1. Strictly speaking, it is a cuboid, as the sides are not of equal 
length; but the name cube has become the standard terminology. The three 
axes (sides) of the cube represent levels of three variables, and the cells of 
the cube contain the appropriate data. Summations can be carried out in the 
three directions at each level, and the aggregated values can be stored, ready 
for retrieval.

Thus, if we were interested in the sales of products in different outlets at 
different times, many of the totals we ask for would already be calculated 
and quickly obtained. We might want the number of an item sold in all 
outlets in 2011, say, and then request the total for a particular outlet in 
December 2011.

This example considers three variables only, but it is possible to set up hyper-
cubes with many dimensions representing many variables. Unfortunately, it is 
not possible to draw them, even though it is no particular problem to define 
them mathematically as far as the computer is concerned.

In addition to aggregating totals, other readily calculated statistical indicators 
can be aggregated. Thus standard deviations and confidence limits can be 
made readily available, and also diagrammatic presentations of results, in the 
form of bar charts, for example.

Future Developments
The so-called Internet of Things is already with us to a limited degree, but its 
possible expansion is truly mind-boggling. Sensors can be attached to virtually 
anything to measure a range of properties and transmit data to a processing 
center. Details of any specified required action can then be transmitted to 
wherever the information is needed. Monitoring of engines and machinery in 
general has been around for some time, but current buzz is of domestic freezers  
that keep an inventory of their contents and signal when the stocks need 
replenishing. Flexible sensors fitted into clothing could detect when cleaning 
or replacement is required, or warn of a pickpocket or a lost bunch of keys. 
More important, and more feasible with present technology, is the proposal of 
benefits in health care by remotely monitoring patients in their own homes.



Chapter 22 | Data Mining226

Two important advances that will eventually produce greater potential for 
big data are smaller devices for storage and processing, and faster processing.

The volume of space required to store or process a specified amount of data 
has decreased rapidly and currently halves every three years or so. Recent 
advances in nanotechnology are promoting research in manipulating units of 
storage at the atomic level. In 2012, IBM announced success in storing and 
retrieving 1 bit of data in the magnetic properties of just 12 atoms. Present 
technology requires about 1 million atoms per bit. In 2013, researchers from 
the University of Southampton, UK, demonstrated a laser method of achieving 
the storage of 360 terabytes of data on a small piece of fused quartz, a mate-
rial that is exceptionally stable. Also in 2013, a team at Cambridge University 
stored 154 Shakespeare sonnets, a photograph, and a 26-second audio clip of 
Martin Luther King’s “I have a dream” speech on a speck of synthetic DNA.

As size is reduced, the problem of electrical circuits overheating increases. 
This is because although the electrical currents are small, they are very close 
together, and local temperatures can be high. The use of optical fibers holds 
the promise of smaller devices, as the passage of light pulses along the fiber 
does not generate appreciable heat. However, the production of optical com-
puters is still some way in the future.

With regard to the speed of processing, parallel arrangement of computers 
is the only way of increasing it at present. A major breakthrough is expected 
in the future, though how far away it is no one can say, when the first 
practical quantum computers appear. Because of the quantum behavior of 
elementary subatomic particles such as electrons and photons, it is possible 
for them to be in two states at the same time. This allows, in principle, a 
computer circuit to be free from the limitation that each unit must be on or 
off, registering one bit. Instead, the unit can remain in both states, referred 
to as a qubit (“quantum bit”). Parallel processing is potentially possible with 
such an arrangement, and much research is pursuing the possibility. We 
await the results with interest!
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STOCKING UP FOR STORMS

Walmart had big data before anyone had heard of big data, and not only had it, but was 
using it to improve its business operations in ways that many companies would rush to 
follow in subsequent years.

Back in September 2004, Hurricane Frances was moving across the Caribbean and 
heading for Florida’s east coast. Precautions were being taken. People moved to higher 
ground and prepared themselves as best they could.

Just three weeks earlier, Hurricane Charley had struck, and Walmart realized that in 
these difficult situations, shopping habits could be very different from usual. Executives 
could see that from the experience with Charley, it should be possible to predict demand 
and therefore supply goods in line with customers’ requirements.

Even then, Walmart had some 460 terabytes of data stored on its computers. The data 
came from 3,600 stores in which about 100 million customers shopped each week. 
Checkout scanners recorded sales item by item.

The available data relating to Hurricane Charley was mined, and the results revealed 
the products that were required in quantities greater than normal. Electric flashlights, 
of course, were evident, as we would have expected. However, the top-selling item was 
beer. The product that no one would have expected to be on the list was strawberry 
Pop-Tarts. The increase in sales of these, prior to the hurricane, was not marginal but 
was in fact seven times the normal rate.

As a result of the analysis, deliveries of the predicted desirables were made to the 
Walmart stores in the path of Hurricane Frances, and it was reported subsequently that 
most of the goods stocked specially for the incident sold quickly.



Predictive 
Analytics
It’s Only Arithmetic!

The first step in interrogating the data for a possible relationship is the selection  
of a limited amount of data, called the training data, from which a model will  
be developed. The model is an idealized relationship, involving a number of 
variables, that is suggested by initial examination of the training data or by 
practical observations. Many different kinds of models are in use, having been 
drawn from different disciplines. Predictive analytics is essentially a statistical 
process in that the results obtained are not precise but are expressed in terms 
of probability. Thus, levels of reliability in terms of confidence limits are a 
feature. The various statistical methods that we have discussed in previous 
chapters have their use in setting up proposed models. In addition, techniques 
from studies of machine learning, artificial intelligence, and neural networks are 
in use. The development of new and improved models is an active area of 
research. The following sections are intended to give an indication of the 
kinds of models that are used and the way in which they work.

Simple Rules
A rule is an “if … then …” statement which may include few or many variables. 
We could have a rule, for example, that if an applicant for a mortgage is a 
self-employed plumber aged between 30 and 40 years, then it is 90% certain 
that he will not default on his payments. Rules are more appropriate when 
the variables are descriptive, although numerical variables can be dealt with by 
grouping values within defined limits as in the example quoted.
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The 1R (One Rule) rule selects one variable from a number of possibilities on 
the basis of which variable gives the least number of errors. To illustrate the 
method, we will use the following data, which shows whether a particular item 
sells or not. We have data for 12 customers, male and female, on different 
days of the week at two different stores. This is an incredibly small sample but 
serves to illustrate the procedure:

Gender Day Store Sells

Male Saturday A Yes

Male Sunday A Yes

Male Saturday B Yes

Male Weekday B No

Male Sunday A Yes

Male Saturday B Yes

Female Weekday A Yes

Female Saturday A No

Female Sunday B Yes

Female Saturday A No

Female Sunday A No

Female Weekday B No

For each variable, we note the majority result:

Gender Male 5 out of 6 Yes

Female 4 out of 6 No

Total 9 out of 12

Day Weekday 2 out of 3 No

Saturday 3 out of 5 Yes

Sunday 3 out of 4 Yes

Total 8 out of 12

Store A 4 out of 7 Yes

B 3 out of 5 Yes

Total 7 out of 12



231Better Business Decisions from Data

Gender is adopted as the variable for the rule because the number of total 
successes, 9 out of 12, is the highest of the three. So the rule is that the item 
sells if the customer is male but not if the customer is female.

With the use of simple statistics, the approach can be extended to produce 
several rules from the same data so that the effect of all the variables can be 
seen (Frank, 2009). The same data is set out differently here:

Yes No

Gender Male 5 1

Female 2 4

Day Weekday 1 2

Sat 3 2

Sun 3 1

Store A 4 3

B 3 2

Total 7 5

We now express the Yes and No numbers as probabilities. Thus, 5/7, below, is 
the probability that when a sale takes place the customer is male. The fractions 
listed in the Total column are the probabilities of getting a sale or not in the 
whole of the data:

Yes No

Gender Male 5/7 1/5

Female 2/7 4/5

Day Weekday 1/7 2/5

Sat 3/7 2/5

Sun 3/7 1/5

Store A 4/7 3/5

B 3/7 2/5

Total 7/12 5/12
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These probabilities allow us to provide a rule for each of the various combi-
nations of the variable levels by using the multiplication rule (the “and” rule) 
introduced in Chapter 3. For example, if we have a male on a weekday in store 
A, the relative probability of a sale is

5/7 x 1/7 x 4/7 x 7/12  = 0.034

and the relative probability of no sale is

1/5 x 2/5 x 3/5 x 5/12  = 0.020 .

Note that these are not true probabilities in this form, as the two do not 
add to unity, but they are in the correct proportion so we can normalize the 
values to

Probability of a sale = 0.034/(0.034+0.020) = 0.63

Probability of no sale = 0.020/(0.034+0.020) = 0.37

The rule would therefore be that there would on balance be a sale, though 
the evidence is weak.

To take a further example, a female on a Saturday in store B leads to the  
following calculation:

Relative probability of a sale = 2/7 x 3/7 x 3/7 x 7/12 = 0.031

Relative probability of no sale = 4/5 x 2/5 x 2/5 x 5/12 = 0.545

Probability of a sale = 0.031/(0.031+0.545)   = 0.05

Probability of no sale = 0.545/(0.031+0.545)   = 0.95

There would be a greater degree of confidence in this rule than in the previ-
ous one.

The approach provides us with twelve rules, one for each of the twelve com-
binations of the levels of the three variables. Some rules will be more reliable 
than others. If it happens that the data contains contradictory entries, and this 
is likely in a reasonably large sample, the uncertainty in the derived rules will 
be greater.

There is a more serious problem with this simple technique. It will be recalled 
from Chapter 3 that for probabilities to be multiplied together in the “and” 
rule, the variables must be independent. It is likely that many of the variables 
in the database are not independent. In the above example it is likely that 
weekday shoppers are largely female. The effect of dependency between the 
variables is to bias the result. By multiplying the probability of the sale being to 
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a female customer by the probability that the sale is on a weekday, we could 
be increasing the effect of the customer being female.

It is evident that a set of data can generate a large number of rules; and 
because of this, there is a danger of over-fitting. We previously discussed over-
fitting in relation to nonlinear regression, where we saw that it is always pos-
sible to obtain an equation that produces a curve passing through every point 
on a graph. Such an equation is of no practical use. Similarly here, we could 
end up with a set of rules that describes perfectly every situation represented 
in the training data. But the set of rules would then be merely an alternative 
representation of the training data and would have achieved nothing.

The usefulness of a rule depends on two characteristics: accuracy and cover-
age. As we saw above, accuracy can be expressed as the probability that the 
rule will give a correct result. Coverage indicates the relative occurrence of 
the rule in the database. In the data presented above, only one quarter of the 
data involves purchases during weekdays, so the coverage of rules involving 
such purchases is only 25%. Rules having high accuracy and high coverage 
are clearly desirable, but low-coverage rules can be extremely useful if each 
occurrence is very profitable.

More sophisticated methods are available for determining rules. A common 
feature is that they operate on a bottom-up procedure. The data is split on 
the basis of the levels of one variable giving two groups, say. A split on the 
basis of a second variable in a similar way gives four groups.

PRISM is a commercially available system that builds up rules by repeatedly 
testing and modifying the rule under construction.1 It starts with a simple “if A 
then Z” rule, selecting A on the basis of the proportion of correct predictions. 
Improvement is obtained by selecting B in a similar way, giving “if A and B then 
Z.” The procedure continues, bringing in C, D, E, etc. as required, until the rule is 
perfect. The resulting rules are numerous, and some will be contradictory. The 
ambiguities have to be dealt with, possibly by selecting on the basis of coverage.

Decision Trees
A decision tree is a well-known structure and is popular on account of it being 
very easy to follow. Figure 23-1 shows a tree built from the data we used in 
the previous section. At each stage in the tree, the data is separated accord-
ing to a criterion—in other words, by answering a question. The aim is to ask 
the right question at each stage so that the data is separated appropriately in 
order to make useful predictions.

1PRISM is an acronym for “PRogramming In Statistical Modeling” (http://sato-www.
cs.titech.ac.jp/prism/)—no relation to the United States National Security Agency’s 
Internet server surveillance program.

http://sato-www.cs.titech.ac.jp/prism/
http://sato-www.cs.titech.ac.jp/prism/
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The key issue, therefore, is the choice of the best question to ask at each stage. 
Classification and Regression Tree (CART), which is a commonly used method, 
examines all possible questions and selects the best. The best is the one that 
decreases the disorder of the data; and for this reason the term entropy, which 
is a measure of disorder, is used. A complex tree is in effect constructed, but 
repeated validation at each stage and avoidance of over-fitting result in an 
efficient structure.

Another method is Chi-squared Automatic Interaction Detector (CHAID). As the 
name indicates, the Chi-squared test (Chapter 7) is used to decide which 
questions are to be asked to form the splits in the tree. Contingency tables 
are set up and, you will recall, the data has to be descriptive. Continuous 
numerical data can be grouped in categories in order to be dealt with. The 
trees, unlike the ones resulting from CART, can employ multiple splits, which 
leads to wider arrangements and eases interpretation.

Figure 23-1. A simple decision tree
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Decision trees generate rules, but there is a difference between these and the 
rules obtained by the methods we looked at in the previous section. Decision 
trees work from the top down, searching for the best possible split at each 
level. For each record, there will be a rule to cover it and only one rule. In the 
example shown in Figure 23-1, taking each route from the top down will repeat 
the records that were used to build the tree. This is, of course, a case of overfit-
ting, justified here in order to show the principle with a small amount of data.

Association
Each record in a database shows association between the variables at the 
specified values or levels. If we look back at the first record in the example 
data we used to illustrate the development of rules, we can see how this 
applies. We had “If male and Saturday and store A, then yes.” Thus we have 
association between four variables in the record. In fact, we can break down 
the association to give many more associations in the form of rules:

If male then Saturday

If Saturday then male

If male and Saturday then store A

If male and Saturday then store A and yes

and so on

A total of 50 rules could be stated on the basis of the associations revealed 
in this single record. This is a very large number; but, of course, it is unlikely 
that many of the rules would be of practical use. Because so many rules can be 
generated, it is necessary to have a rationale for weeding out the ones unlikely 
to be useful and for selecting productive ones.

The selecting is on the basis of accuracy and coverage. Accuracy will show the 
likelihood of the rule giving the correct answer, and coverage will indicate how 
often the rule is likely to apply.

We can use the full list of twelve records from the previous example to show how 
the procedure is applied. The number of levels included in the data is as follows:

Gender Day Store Sells

2 levels 3 levels 2 levels 2 levels

The number of possible two-component groups—e.g., “Male, 
Saturday”—is 30.

The number of possible three-component groups—e.g., “Male, 
Saturday, A”—is 44.

The number of possible four-component groups—e.g.,  “Male, Saturday, 
A, Yes”—is 24.
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Note that these numbers are not readily apparent: They arise from summing 
the possible combinations of the levels of the variables.

We can reduce the number of groups of interest by considering coverage. 
Male and Saturday appear in three of the twelve records so coverage is 3/12, 
or 25%. Similarly, the following values are obtained by comparing the records 
with the complete set of combinations:

Coverage 2 components 3 components 4 components

0 0 12 15

1 6 19 6

2 12 10 3

3 9 3 0

4 2 0 0

5 1 0 0

Total 30 44 24

We might decide at this stage that it is worth considering only those groups 
with a coverage of 4 or 5, and make a further judgment on these on the basis 
of accuracy. The three selected groups are all two-component, so each group 
gives us two possible rules. These are as follows:

Coverage 5. Male, Yes

Rule: “If Male then Yes” Accuracy 5/6  =  83%

Rule: “If Yes then Male” Accuracy 5/7  =  71%

Coverage 4. Female, Store A

Rule: “If Female then Store A” Accuracy 4/6  =  67%

Rule: “If Store A then Female” Accuracy 4/7  =  57%

Coverage 4. Store A, Yes

Rule: “If Store A then Yes” Accuracy 4/7  =  57%

Rule: “If Yes then Store A” Accuracy 4/7  =  57%

Note that, if we had been considering groups with more components, there 
would have been many possible rules for each group because of the ways that 
the members of the group can combine on either side of the if-then state-
ment. We mentioned that just one of the four-component groups gives rise to  
50 possible rules.



237Better Business Decisions from Data

It is worth pointing out that the rule having the highest accuracy with the 
maximum coverage—i.e., if the customer is male then the item sells—is the 
rule that we found using the 1R rule when we discussed simple rules.

It is very laborious working through the coverage of the groups and the accuracy 
of the rules by hand, even when there are few data—but it is, of course, a 
simple task for a computer program.

Clustering
Clustering is the grouping of data in such a way that the levels of the variables 
in each group are more similar than the levels of the corresponding variables 
in the other groups. Suppliers, for example, could be grouped according to the 
type of goods supplied, on their location, or on the value of goods supplied. 
Patients could be grouped according to their various symptoms. If any one 
of the variables was used for grouping, it is unlikely that the other variables 
would show an identical grouping. The aim is to establish which variable or 
combination of variables gives the optimum overall grouping.

Thus the manner of grouping is not decided at the outset. The grouping 
technique fixes the grouping, and the situation is referred to as unsupervised 
learning. There is no preconceived pattern to be imposed on the process, and 
it may not even be evident when the grouping is completed what the logic is 
that has fixed the optimum outcome. However, a decision has to be made as 
to how many groups would be desirable. Clearly, without some restriction on 
number, the optimum arrangement would be an enormous number of groups 
with one member in each. This would be a case of overfitting and would not 
serve any useful purpose.

The grouping progresses on the basis of the proximity of one record to 
another. The proximity is taken to be the distance separating the records. 
If we think initially of two variables, x and y, a two-dimensional graph would 
allow the plotting of each record, and the points might show clustering in some 
regions—small x and large y, say. The distance between each pair of points 
would be the length of the straight line joining the two points, and this would 
be a measure of the association. For three variables, we could draw a three-
dimensional graph, and the required measures would again be the lengths of 
the lines joining the points. Although we cannot draw beyond three dimen-
sions, there is no problem mathematically in having an unlimited number of 
dimensions, to cater for all the variables, and calculating the distances between 
the various points. The grouping is optimum when the distances within the 
groups are minimized and the distances between the groups are maximized. 
The variables, of course, have different units (dollars, weeks, meters, etc.), and 
an equivalence has to be defined to allow the distances to be calculated. The 
equivalence could be on the basis of the range of each variable.
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Many variations in the iterative routine work toward the optimum group-
ing. The group centers, which may be initially chosen randomly, are modi-
fied according to the resultant calculated distances. Some systems work from 
an initially defined number of groups and allow subsequent changes to the 
number. Other systems produce a hierarchy of groups, either starting from a 
coarse grouping and breaking it down, or starting from the separate records 
and progressively reducing the number of groups. Although we have referred 
to an optimum grouping in the discussion, it should be noted that no system 
can guarantee a perfect unique solution.

Closely related to clustering is the nearest neighbor technique. The concept of 
proximity in multidimensional space is again used; but rather than attempting 
to rationalize the data by grouping, the aim is to establish similarities between 
records to provide predictions. It is thus a form of supervised learning, unlike 
clustering.

Neural Networks
A neural network is so named because of the similarity to the network of neu-
rons in the brain. The analogy is extended to speaking of the neural network 
as being able to learn in the way the brain learns, although the analogy should 
not be taken too far. It is not correct to assume that the neural network is a 
black box that can simply be fed the data, which it will learn to process and 
then output the answers. Nonetheless, neural networks emerged from the 
discipline of artificial intelligence, whose aim there is to mimic the working of 
the brain.

The similarity is apparent in the schematic layout of the neural network. It 
consists of nodes connected by links so that data moves from input nodes to 
the output node. Figure 23-2 shows schematically a simple arrangement to 
illustrate the principle.
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There may be a layer of nodes between the input nodes and the output node, 
and these are referred to as hidden nodes. There is an input node for each vari-
able, and the input data is usually scaled to give a value between 0 and 1. The 
link to the next node will perform a multiplication on this value before passing 
it on. The multiplication is effectively a weighting factor. The next node will be 
accepting several values from other input nodes. The added values will then 
be passed to the output node. The number of nodes to be used has to be 
decided at the outset, and the number of links may number tens of thousands. 
The output data are numerical and must be converted back to the required 
variable values or levels.

The records from the training data are fed in one at a time, and the output 
is compared with the required value. The error leads to modifications in the 
link weights, large errors producing large changes and small errors producing 
small changes. As the process continues, the link weights are revised and the 
system approaches acceptable outputs short of overfitting. For overfitting can 
present problems, particularly as it is difficult to see how the processing has 
taken place. Indeed, there is no logical approach to the process that one could 
describe, other than that the arithmetic contrives to get the right answers. 
Because of the complexity in understanding the processing and the required 

Figure 23-2. A simple neural network illustrating the principle
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conversion of the output, there have been moves to package neural network 
programs to suit specific applications.

The simple arrangement of Figure 23-2 has just three input nodes accepting 
the age, weight, and height of a subject we wish to assess for the possibility 
of hospital treatment being required in the following year. Each of the input 
variables (within reasonable limits) is scaled to give a value between 0 and 1. 
The output is 0 for no and 1 for yes. A set of possible link-weighting values 
is shown. The outputs for three example sets of input data can be seen to lie 
between 0 and 1 and may be interpreted as the probability of hospital treat-
ment being required.

Ensembles
With a choice of many different methods and models to use, it is difficult 
to know at the outset which is likely to be the best for a given set of data. 
However, it has been found that combining two or more different models can 
give better predictions than any of the individual models. In effect, a voting 
procedure is taking place.

These combined models are referred to as ensembles. A remarkable finding 
with regard to ensembles is that that they do not appear to suffer from over-
learning (Siegel, 2013: 148-149). Overlearning, or overfitting as I have described 
it previously, arises when the analysis has become sophisticated to the point 
where it is describing the data so fully that the results are sensitive to the 
detailed features of the data. Siegel likens this advantageous property of 
ensembles to the behavior of crowds. A group of people guessing, and averag-
ing the result, will usually get closer to the right answer than most of the indi-
viduals. Watson, the IBM computer that beat two expert contestants on the 
US television quiz show Jeopardy! in 2011, was programmed with an ensemble 
of hundreds of models.

MANHOLE CONTROL

New York City has more than 94,000 miles of underground electrical cables. Manholes 
provide access to the cables, and periodic faults cause manhole fires, explosions, and 
smoking manholes. There is an enormous amount of data relating to past events and 
inspections dating back to the 1880s. The records have been collected and stored by 
Consolidated Edison, the power utility serving New York City.

In order to radically update the company’s inspection and repair programs, it was 
decided that the past records could be used to identify the manholes most at risk of a 
serious incident and those least at risk. This would improve the reliability of the system 
and public safety.
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A team consisting of scientists from Columbia University and engineers from Consolidated 
Edison took on the task of processing the available data. The raw data was very varied, 
in that it included records of past events, engineers' records of dealing with events, 
inspection records, manhole locations, and cable data. Because of the length of time 
over which information had been collected, there was no consistency in the manner of 
recording or even in the identification of locations and components.

The raw data was processed to provide an accurate event history over a ten year period 
for each manhole and a potential 120-year cable history. Combined with inspection 
results, the data was processed by machine learning algorithms to produce a predictive 
model aimed at predicting failures of individual manholes.

The model was tested using training data. Data from three boroughs were used: 
Manhattan, Brooklyn, and the Bronx. Predictions for 2009 were obtained from earlier 
data and compared with the actual manhole explosions and manhole fires. The top 10% 
of manholes predicted to have a serious event contained 44% of the ones that did have 
a serious event, and the top 20% contained 55% of the ones that had a serious event.

The exercise was seen to be of great value in providing a better procedure for electrical 
grid inspection and repair that could improve public safety and energy reliability. The 
project demonstrated the value of using all available data, no matter how mixed and 
confused—big data, not just a selection. The project also demonstrated the value of 
collecting data for future prediction and not simply as historical records.



Getting Involved 
with Big Data
What Would You Like To Know?

In the previous chapter, we saw that the procedures for extracting informa-
tion from big data can be quite simple. In contrast, the setting up of computer 
systems for applying the procedures to large amounts of data in a reliable and 
rapid manner requires considerable expertise. Following a summary of the 
potential applications of big data, we will discuss how businesses can become 
part of this new and exciting development.

Applications
There is hardly any area of human activity where big data is not having an 
impact, and the trend is likely to continue at an increasing rate. Any summary 
of the applications tends to end up as a very long list of examples.

Search engine providers such as Google and Yahoo were probably the first to 
use big data methods. Documents are located by text retrieval on the basis of 
keywords and similarities.

Retail sales provide appropriate applications. Large supermarkets, such as 
Walmart and Tesco, have incredible amounts of data, as each sale of each 
item is recorded via the barcode. It may be that certain items tend to be sold 
together in the same transaction, or certain items may sell better at certain 
times. Pricing and stocking can be altered to take advantage, and sales promo-
tions can be timed appropriately. If purchases are made with the use of store 
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cards or loyalty cards, the items sold can be linked to the customer and thus 
to the purchasing habits of customers in relation to gender, age, address, and 
so on. Tesco is installing face-scanning devices in its petrol stations to register 
the gender and likely ages of its customers.

If a retailer sends vouchers and details of products or special offers by post 
to potential customers, most of the approaches, of course, will produce no 
result. But there will be stored data available showing the features of those 
that have been successful in the past. It thus becomes possible to target cus-
tomers of the type that are most likely to respond positively. Sales of financial 
products such as credit cards, insurance, or investment opportunities can be 
targeted in a similar way. The strategy can be applied by all kinds of businesses 
involved in sales. Amazon, for example, sells a large proportion of its books by 
sending recommended titles to customers on the basis of previous purchases. 
Retention of customers can be improved by identifying and targeting those 
most likely to depart.

The Internet can provide large amounts of data for the retailer. Every click on 
a website gives information not only about a sale but also about initial interest 
in a product, repeated interest, an immediate rejection, a rejection when the 
price is revealed or when the delivery charge appears, and so on.

Companies providing transport of mail, parcels, and goods generally make 
use of barcodes and thereby potentially accumulate much data. Information 
regarding the nature of the goods, their sources, and their destinations allows 
future resource needs to be anticipated and areas of growth to be identified. 
Scheduling of deliveries and route planning can be improved.

Financial institutions and banks can use historical data to identify the level of 
risk in offering loans to particular customers or even the possibility of fraud. 
The spending habits of credit card customers can reveal those most likely to 
be interested in other financial products. Fraud detection can also be employed 
by tax authorities and those responsible for government contracts. Possible 
fraudulent insurance and warranty claims can be detected.

In the fight against crime, areas more likely to be hit by specific kinds of 
criminal activity can be highlighted. Likelihood of terrorist attack can be deter-
mined, and the probability of repeat crimes from prisoners pending release 
can be quantified.

Product development is an expensive process, and if the product misses its 
target market, the result can be disastrous. Traditionally, sampling of prospec-
tive customers has been used to establish the desirable features of proposed 
products; but sampling is expensive, and its effectiveness is limited by the size 
of the sample. Predictive analytics offers the possibility of relating features 
of the new product to its desirability among specific types of customer as 
revealed by previous purchasing patterns.
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Medical records show the characteristics and previous medical histories of 
patients who later develop specific conditions. Relationships can be identified 
that give warnings of possible future ailments. Similarly, the efficacy of different 
treatments may be compared. Successful predictions have included the spread 
of influenza, occurrence of premature births, and risk of death while undergo-
ing surgery. Diagnosis of breast cancer has been improved.

The control of industrial processes reaps benefits such as reducing the num-
ber of defective items and avoiding operational problems. Faults in machinery 
and large industrial installations are often preceded by symptoms such as 
vibrations, temperature rises, or noises of various kinds. Information that dis-
tinguishes between serious and benign symptoms or that indicates a probable 
time to breakdown is of considerable value. Preventive maintenance schedul-
ing can benefit from such information. In a similar way, the diagnosis of prob-
lems with cars and other vehicles from reported symptoms of malfunctioning 
is possible. The likelihood of failure of electric cables, washing machines, and 
office equipment has been predicted.

In the energy industries and utilities, monitoring of customer usage with regard 
to time and location can improve the efficiency of generation and supply.

Charities have benefited from increased donations and lower costs by target-
ing likely donors. People most in need of help have also been located.

Governments hold vast amounts of data. Some of it is centrally held—census 
and tax records, for example—and is usefully processed, but much of it is 
spread over numerous local sites. Combining data stores offers the potential 
of useful predictions in infrastructure planning, crime fighting, and health care, 
for example.

Mayer-Schönberger and Cukier (2013) and Siegel (2013) describe many appli-
cations in fascinating detail. The latter has a summary table of 147 specific 
cases of predictive analytics that have produced benefits, usually financial, for 
the organizations involved.

It should be noted that some of the applications mentioned above are not, 
strictly speaking, forecasting. Rather, they are searching for answers that are 
known, by someone somewhere, at the present time. Search engines, for 
example, locate information that already exists, though for the user the infor-
mation is for future use. In the case mentioned in the preceding chapter of 
Watson’s success in playing Jeopardy!, the answers to the factual questions 
were of course known in advance to the contest producers, and Watson's 
task was to determine those answers from the information contained in its 
few terabytes of disk storage.
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AIRCRAFT CRAFT

Rolls Royce has risen from a position of financial difficulties in the 1970s to being a 
successful global company. It is the world's third largest maker of aircraft engines and 
the second largest maker of large jet engines. About half of wide-bodied passenger jets 
and a quarter of smaller aircraft under production are powered by Rolls Royce engines. 
Also important is its business in marine engines and in the energy industries.

A major factor in its success story has been the collection and application of data. 
Its jet engines are fitted with monitoring systems that collect temperatures, pressures, 
flows, rotational speeds, and vibration levels at various locations within the engine. The 
successful series of Trent engines can be fitted with about 25 sensors. Signals from 
the sensors are collected during takeoff, climb, and cruise and are transmitted to the 
company's headquarters in Derby, via radio or satellite link, during each flight of the 
aircraft. Any unusual engine conditions trigger additional transmissions.

At Derby, the collected data is analyzed automatically using algorithms based on neural 
networks. Unusual features are studied by skilled engineers to obtain a diagnosis on 
which decisions can then be made. It may be necessary to notify the maintenance team 
at the destination airport that there is a need to undertake checks or, alternatively, to 
give assurance that the engine performance is satisfactory. Either way, the procedure 
leads to fewer delays and improved passenger safety and satisfaction. Gradual 
deterioration of an engine can also be identified and inspection schedules agreed on 
after discussions with the operating company. Sudden changes in engine performance 
may require more immediate examinations which, again, can be programmed to suit the 
operator's options without compromising safety. The procedures have led to improved 
working lives for the engines.

Rolls Royce's utilization of data puts it in a commanding position when it comes to the 
servicing side of the business. When it sells an engine, it is effectively selling a service 
for the life of the engine. It would be difficult for another company to break into this 
corner of the market.

The Big Players
Chapter 1 started with matters that could be handled with pencil and paper. 
Subsequent chapters concerned calculations that require a pocket calcula-
tor, a spreadsheet, and eventually computer packages. This chapter reaches 
a stage when it is time to get assistance from experts. In spite of what you 
may have read or been told, handling big data is not easy. The subject is full of 
new terminology and much jargon, and the procedures require knowledge of 
programming and other specialized subjects.
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The best-known technology for handling big data is probably Apache Hadoop, 
which was developed by Yahoo in the period 2006 to 2008. It is now an open 
source data-storage framework that can handle 10 to 100 gigabytes of data 
and above (Dumbill, 2012). It uses a file system—the Hadoop Distributed File 
System (HDFS)—which is distributed among numerous servers. In real time, 
it can capture, read, and update large amounts of unstructured data such as 
social media, clicks, event data, and sensor data. In fact, Hadoop can accept 
any kind of data, either for processing or long-term storage. There is much 
replication and redundancy in the system so that server failures do not cause 
problems.

Hadoop is not a single defined entity but rather an evolving ecosystem embrac-
ing numerous auxiliary modules and programs.

Moving data is expensive, so the data processing is carried out where the data 
resides, though the tasks are distributed to the numerous servers. The pro-
cessing is by means of MapReduce, which was originally developed by Google. 
The “map” in MapReduce refers to the filtering and sorting of the data, and the 
“reduce” refers to a summarizing process. Results of processing are returned 
to HDFS. MapReduce is used in other databases apart from Hadoop.

Java programming for loading files in HDFS is tedious. The task is made easier 
by the use of Pig or Hive. Pig, from Yahoo, is a programming language that can 
deal with semi-structured data. Hive, from FaceBook, is a module that allows 
Hadoop to be used as a data warehouse, accepting queries in a form similar to 
SQL, a commonly used programming language for database management.

Improvements in data access are provided by HBase, Sqoop, and Flume. HBase 
is a database that runs on top of HDFS providing billions of rows of data 
for rapid access. HBase can also be used as a source and destination of data  
for MapReduce. Sqoop imports data from databases into Hadoop via HDFS or 
Hive. Flume, from Google, is used for streaming data into HDFS.

Zookeeper organizes the various components, while Oozie manages the work 
flow. Mahout is a machine learning component.

Other add-ons are used in Hadoop applications, some of which are part of 
Hadoop and some of which are not. It can be seen from this brief summary that 
the choice of components for particular circumstances is a job for experts.

The kinds of problems suitable for analysis are varied. Risk exposure can be 
modeled for the banking and insurance industries. Customer churning can be 
analyzed. Product preference for Internet sales, retailing generally, advertising, 
and manufacturing can be identified. Sensor data is used to predict failures for 
telecommunications operators and data centers. Search analysis for Internet 
commerce and websites is dealt with. Threats, fraud, and spam can be identi-
fied. There is a facility for data from any kind of business, on which various 
analyses can be tried in the search for patterns.
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Apache Cassandra is another open source database management system. It was 
developed at Facebook, and its long list of important users, such as Twitter 
and Netflix, vouches for its versatility and reliability. It is a distributed system 
that automatically replicates to multiple centers. There are no single points 
of failure. In comparison with Hadoop, it scores in dealing with real-time data 
and less so in terms of analysis.

Large companies such as Google, IBM, Microsoft, HP,  Amazon, SAP, and Oracle 
make use of open source facilities, together with their own components,  
to offer a commercial service to businesses. Cloudera, Teradata, 1010data, 
Fujitsu, Kognitio, Microstrategy, and NetApp are some of the other companies 
offering similar services.

CREDIT WHERE IT’S DUE

In 2009, United States legislation was introduced to protect subprime borrowers.  
It required lenders to provide fairer rates and fees for their borrowers. Traditionally, 
lenders in the subprime market depended on rates and fees for their profitability.

Premier Bankcard is an organization providing credit cards for individuals with damaged 
credit histories. The company is committed to helping individuals receive a second 
chance with regard to their finances. The new legislation created problems. On the one 
hand, if too many cards were issued to customers who had not reached a satisfactory 
level of creditworthiness, there would be losses and pressure from the regulators. On 
the other hand, too much emphasis on those well on their way to recovery would lead 
to loss of customers moving to prime card issuers.

Premier decided to employ SAS Business Analytics to identify its best customers: 
the ones who lie between the two extremes and are on their way to creditworthiness. 
Aspects also covered in the analyses were rapid response to customer and market 
data, by daily review and daily forecasting, and fee justification analyses to meet the 
regulations.

The approach had the beneficial feature of being based on Premier's own data, and not 
on imported data or performance models.

The characteristics of the ideal customer were identified. It was found, for example, that 
the best customers had been with Premier on average for five years. Knowing who the 
best customers are means they can be targeted effectively. Customer retention was 
seen to be important. Retaining one customer for an extra month makes for Premier 
nearly $12. An improvement of 10% in retention strategy produced $4.8 million.

The results achieved a revenue increase of $50 million, an additional $24 million from 
better customer retention and a decrease of $1 million is losses resulting from fraud.
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The Smaller Options
With so much publicity being given to big data, many small and medium-sized 
businesses that are not involved are considering whether they should be, and 
perhaps wondering what they want from it. Most of these businesses will not 
have in-house expertise and will rely on commercial providers of big data 
analysis. Furthermore, some such businesses will avoid involvement with the 
big players described above and will prefer to start in a more modest way. 
There are dozens of consultants who can provide big data analysis. These 
are the smaller players, employing between a handful of staff up to several 
hundred. Often they will have developed modules to carry out fairly standard 
analyses of data that can be readily adapted to the needs of different busi-
nesses, and this clearly reduces the costs involved. The Internet, of course, 
provides details of these consulting firms, often with example case studies 
of their activities, and there are useful directories that include comparisons 
between the various firms. SourcingLine is a company that provides rankings 
and reviews of consulting companies in the field of big data analytics.

A business looking for assistance will have plenty of data in the form of past 
records of activities, and this would clearly be the starting point. Analysis of 
the existing data is likely to be straightforward, although it is important to be 
clear about what questions are being asked of the data. It will not be exciting, 
for example, to be told that more sandals are likely to be sold in the summer 
and more boots are likely to be sold in the winter.

The initial results will provide a useful introduction but will be of limited value 
unless new data is fed into the system as it becomes available. Streaming of 
real-time data is essential for rapid application of the results of analysis and 
effective control of business operations. If the company recognizes a particu-
lar problem for which a solution is required, the data analysis firm can develop 
a suitable model or use one that it may have available. The model can be 
supplied and staff trained to use it, applying it as necessary to different sets of 
data. Any additional problems will require further appropriate models.

So far, the business is probably not locked into an agreement with the solu-
tion provider and can shop around, but further analysis of a more advanced 
nature may require commitment to a more permanent arrangement. The 
business will supply full details of its activities and request a system that will 
produce modules capable of analyzing and dealing with predictions and prob-
lems. Included will be predictions of potential future problems and the ability 
to deal with them as they emerge.

With regard to the choice of data analysis company, the same criteria will apply 
as when engaging any other form of consultancy. Issues such as cost, extent 
of lock-in, time scale, and security of data will be considered. There may be  
advantage in commissioning a company that has assisted or specializes in similar 
businesses and may have appropriate expertise and software readily available.
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TURNING CHURNING TO EARNINGS

2degrees is a New Zealand mobile telecommunications company. In four years it won 
one million customers in the face of long-installed competition.

With no in-house expertise but with a recognition of the value of big data analysis, the 
company decided to enlist the help of 11Ants Analytics. Churning—that is, customers 
leaving and moving to a competitor—was a specific problem. Indeed, it is a common 
problem in the mobile phone business. 2degrees chose to use a suite of modules 
consisting of a customer analyzer, a customer-churn analyzer, and a model builder. 
The use of these available modules from 11Ants Analytics meant the work could go 
ahead quickly.

The results were impressive. Customers most at risk of churning were identified by time 
on network, days since last top-up, whether the customer number was ported or not, 
customer plan, and calling behavior over the previous 90 days.

An experiment was run for three months. The customers were classified by their 
likelihood of churning. The 5% of customers chosen by the 11Ants Churn Analyzer 
as being most likely to churn were found to be 12.75 times more likely to churn than 
customers chosen at random. The 10% of customers chosen as most likely to churn 
were found to be 7.28 times more likely to churn than customers chosen at random.

2degrees could now focus on those most likely at risk and reduce its expenditure on 
retention marketing. The smaller number to be targeted meant that the retention offers 
could be more generous. The added benefit was that customers not likely to churn 
were not annoyed by messages asking them to stay. Also, offers could be aligned to the 
customers’ usage—minutes for talkers, texts for texters.



Concerns  
with Big Data
The Small Print

Beneficial innovations always have downsides. We accept large numbers of 
deaths from road accidents and occasional air disasters for the benefits of 
faster travel. We accept the risk of nuclear war for the benefits of nuclear 
energy. Big data is not unique in having problem areas—but we are not con-
templating the end of civilization!

Security
Data is valuable. It is not just the conclusions from the processed data that 
have an economic value; the data itself has value because of its potential. 
OpusData, for example, is a company that sells access to data from The 
Numbers, a large database containing financial details on about 15,000 movies 
and 18,000 actors, directors, and technicians. Traditionally, of course, there 
have been small businesses that have collected data, fairly laboriously, to sup-
ply to industries and media organizations for a fee. As the stores of data get 
larger, the value increases exponentially. It has even been suggested that data 
stored by a company should be attributed monetary value, which should then 
be added to the company assets.

In the wrong hands, data can result in serious problems for companies, gov-
ernments, and the general public. Security is therefore paramount, particularly 
when a business entrusts its data to cloud storage and processing by a different 
company. Although companies take extreme precautions, it is well-known that 
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leaks of sensitive material have always occurred and still do occur. They can 
range from a laptop being left on a train to hackers accessing bank accounts. 
In February 2014, Barclays Bank reported that it was investigating the loss of 
several thousand files containing customers’ details. It had been alleged that 
the files, which included the customers’ attitudes to risk, had been sold to 
rogue City traders.

Some businesses, understandably, are put off from engaging with big data 
because of concerns about security.

Privacy
Each one of us is extensively documented by data stored by various orga-
nizations. Our details are hoovered up in the course of purchases, online 
searches, social website interactions, financial transactions, and so on. In addi-
tion, there are the more obvious traditional repositories of our data, such 
as electoral registers, employment and tax details, passports, and licenses of 
various kinds.

In the past, when the data lay dormant, it didn’t really matter; but now, without 
consent, the data is being used for various purposes that the general public 
is only just beginning to realize. Sometimes the data are anonymized by the 
removal of names and addresses, but numerous studies have shown that it is 
often a trivial analytical task to identify individuals by combinations of particu-
lar characteristics in the records and links to other databases.

Amazon’s privacy policy puts no restrictions on its collection of data from 
users of Kindle devices and reserves to Amazon the freedom to sell analytics 
of readers’ reading profiles and habits with third parties, such as publishers. 
The potential for systematic and abusive privacy invasion is a mounting con-
cern for many consumers as the use of big data increases. Information about 
what we are doing and what we are likely to do in the future is becoming 
widely known. A downside of this is that we risk being judged on the basis 
of probability rather than actuality. A thirty-year-old artist who listens to jazz 
and lives in a poor part of town may be unfairly denied a bank loan on the 
basis of a prediction of risk from the bank’s big data analysis. An office worker 
who has no interest in sport and regularly eats fast food may be denied medi-
cal insurance. It was reported that American Express fixed credit card limits 
based on where a customer shopped, regardless of the individual’s record 
(Croll, 2012).

Suggestions of what the future holds are reminiscent of George Orwell’s 
1984. A married couple chatting at home discover a difference of opinion. 
The television is switched on and is listening to their conversation. The infor-
mation is processed, and in the next commercial break an advertisement for 
marriage counseling appears (FT Reporters, 2013). More serious are issues 
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of possible legal action against individuals on the basis of probability. Should 
a person be released from prison if there is an 85% chance of his committing 
a further murder? Should drivers of fast cars be fined for potential speeding? 
These kinds of questions may sound rather silly, but we can already be pros-
ecuted for actions justified on the basis of probability. Not wearing a seat belt 
while driving and smoking in public buildings are examples of actions that are 
harmful—but only potentially harmful.

We are beginning to see reactions to the invasion of privacy by big data. Cornell 
University students are opposing New York State’s cooperation with inBloom, 
an organization that seeks to assemble student details in a single database. Of 
the nine states that joined with inBloom, eight have already pulled out because 
of issues of privacy. The Washington Post reported that there is considerable 
concern regarding the activities of the Patient-Centered Outcomes Research 
Institute (PCORI), which is collecting detailed patient medical records. The 
aim is to assemble the data for analysis to improve diagnosis and treatment.

There has been similar opposition in the UK. The introduction of identity 
cards has been strongly objected to. CCTV cameras have had to be removed 
in a suburb having a high population of ethnic minorities, after public protests. 
In 2012, the government introduced legislation for the compulsory destruction 
of samples and profiles of DNA, and fingerprint records, of anyone arrested 
but not convicted of a crime.

The UK government’s plan to bring together the vast amount of medical 
records that the National Health Service holds, at present scattered among 
the various doctors’ offices, health centers, and hospitals, has been put on 
hold. The concern is that the data will be sold to health companies and aca-
demics to bring about major improvements in health care, but breaches in 
security may result in patients being identified. It is somewhat ironic that it 
was a British nurse, Florence Nightingale, famous for her nursing of the sick 
and wounded in the Crimean War, who pioneered the recording of medical 
data in the 1850s in order to improve treatments.

Skills Shortage
Handling big data requires special skills. The new kind of scientist—the data 
scientist—needs to be a combination of statistician, software programmer, 
and graphics designer. Some knowledge of machine learning, artificial intelli-
gence, and neural networks is required. Furthermore, he or she needs to have 
an understanding of business goals and have good communication skills. The 
latter are particularly important because the findings of big-data analysis may 
have to be put to senior executives who have their own prejudices regarding 
what action is needed.
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Though we can expect to produce sufficient data scientists in the future, there is 
currently a shortage. This is well illustrated by the experiences of the Institute 
for Advanced Analytics of North Carolina State University (Burlingame and 
Nielson, 2012: 60–61). In 2012, there were 38 candidates for the Master of 
Science in Analytics (MSA). Among them, they had 591 job interviews with 54 
employers. One or more offers went to 97% of them, and 47% had three or 
more offers. Offers covered a range of businesses: banking, finance, consulting, 
energy, gaming, health care, Internet, pharmaceuticals, research, and software.

A New Concept
The arrival of big data has changed the way we think about statistics. 
Traditionally, statistics has embodied the principles that correlation should 
not be taken to imply a causal relationship and that extrapolation is a neces-
sary evil. In the applications of big data analysis, these basic doctrines are not 
denied, but they are circumvented. The existence of a causal relationship is 
not considered relevant. If association between variables exists, it can be used 
to advantage provided that we act quickly, the rapid response minimizing the 
problem with extrapolation. Some statisticians have reservations about big 
data on these grounds. Others have noted that with so many conclusions 
being derived from the sets of data, a proportion will be simply wrong. This 
point was made in previous chapters when discussing multiple comparisons 
from the same data.

It has been well recognized in the sciences that the act of observing affects to 
some extent that which is being observed. Experimental designs and investiga-
tive programmers take this into account where possible. When the experiment 
is of limited range, the consequences of this feedback are of little significance, 
but the applications of big data can affect large numbers of people. If shoppers 
appear to prefer Jispo cornflakes, techniques will push the sales even higher. 
Eventually other brands disappear and everyone eats Jispo. Are we beginning 
to create a population of puppets, all behaving in identical ways?

The handling and processing of big data is probably the most radical innova-
tion in the practice of statistics that has been seen for a very long time. I can 
visualize the day when statistics based on modest samples becomes referred 
to as “traditional statistics” or even “classical statistics.”
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2214 AD

World Chief Theo 7D9G gazed intently as the 3D screen around him faded. He had 
witnessed the interviews of two candidates for the position of Deputy World Chief. 
The interviews, of course, had not been conducted by him, but by PASWRD. The 
indispensable PASWRD, or, to give it its full name, Processor and Storage of all World 
Real-time Data, could interview and do many other things better than any human 
could.

But there was a problem. PASWRD had reported that there was, in the foreseeable 
future, no difference, economically or socially, whichever of the two candidates were 
to be appointed. Theo would have to decide, but he did not anticipate the task with 
enthusiasm—it was rare for him to have to make a decision without assistance.

He thought for a moment, and then his wrinkled face began to show signs of a smile 
developing. He mentally set PASWRD into forecasting mode and focused on the image 
of the control panel. He inserted the hypothetical appointment of candidate A and began 
to steer a precisely defined path moving into the future. Forecasting beyond five years 
was not permitted, but Theo was able to override the restriction. Eventually satisfied, 
he stopped the projection. He then repeated the process with the assumption that 
candidate B was appointed.

When the second projection had been completed, he thought his chair into a relaxing 
position. He had the answer. Candidate B would be appointed as the new deputy. And 
Theo would have an extra four-year’s life span—plus or minus, of course, the uncertainty, 
which PASWRD reported as 2.3 years at a 95% confidence level.
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Analysis of variance (ANOVA)

data analysis, 158–159
F-test, 161
interactions, 162
pooling, 162
ratio test, 161
residual variance, 159, 161
significant and non-significant  

effect, 163–164
single factor effects, 161
variability, 160

Applications, big data
Aircraft, 246
charities, 245
disk storage, 245
fraud detection, 244
Google and Yahoo, 243
industrial installations, 245
medical records, 245
predictive analytics, 245
product development, 244
resource and growth, 244
retail sales, 243

Autocorrelation
regression line, 200
seasonal effect, 200
simple linear regression  

analysis, 200
temperature, 198
weather and climate, 198

Averages, normal distribution
central clustering effect, 68
expectation, 69
mean value, 68
median, 69
mode, 69

B
Bar chart format, 47

Big data
businesses, 249
churning, 250
cloud storage, 251
communication skills, 253
computer systems, 243
economic value, 251
extrapolation, 254
health care, 253
medical insurance, 252
modules, 249
monetary value, 251
nuclear energy, 251
numerous studies, 252
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PASWRD, 255
PCORI, 253
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radical innovation, 254
real-time data, 249
statistics, 254
traditional statistics, 254
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Binomial data, 34

Binomial distribution
description, 186
population proportion, 186
probability, 186–189

Boilfast, 21

C
CART. See Classification and regression  

tree (CART)

Categorical data, 33

Certainty
common sense, 5
earthquake, L’Aquila, 3
fast thinking, 5
health and safety legislation, 4
proofs, 4–5
reasoning/calculation, 5
seismologists, 3
traditional British game, conkers, 4

CHAID. See Chi-squared Automatic 
Interaction Detector (CHAID)

Chi-squared Automatic Interaction 
Detector (CHAID), 234

Classification and regression  
tree (CART), 234

Clustering, analytics
equivalence, 237
neighbor technique, 238
optimum grouping, 238
unsupervised learning, 237
value of goods, 237

Cluster sampling, 30

Conditional probability
counterfeit coins, 19
defender’s fallacy, 20
description, 18
political debates and advertising, 20
prosecutor’s fallacy, 19

Confidence intervals, 136
population mean, 85
population variance, 84
standard deviation, 84

standard normal distribution, 85
Student’s-t, 86
t-distribution, 86

Control charts
description, 205
sampling by variable (see Sampling by 

variable)
Shewhart charts, 205

Correlation coefficient, 135

D
Data mining, 156

big data, 222
cloud computing, 222
computer storage, 222
data warehouses (see Data warehouses) 
Hurricane Charley, 227
Hurricane Frances, 227
Internet of Things, 225
monitoring, 225
Moore’s Law, 221
nanotechnology, 226
parallel processing, 226
sale/purchase, 221
Walmart, 227

Data warehouses
barcodes, 223
cubes and hypercubes, 225
disadvantage, 223
fact table, 224
parallel processing, 225
supplier, 223
traditional databases, 224

Decision trees, analytics
CART, 234
CHAID, 234
overfitting, 234–235

Defender’s fallacy, 20

Descriptive data, 33–34. See also  
Nominal data

Drugs, 122

Dummy variable, 156

Duplicate ranks, 112–113
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E
Electric kettles, 21

Error
power, 116
probability, 117
risk, 118
Type I error, 115–116
Type II error, 115–116

Exponential distribution, 191–192

Exponential smoothing
description, 201
double, 202
single, 202
triple, 202
weighting factor, 201–202

Extrapolation
forecasting, 180
law of supply and demand, 181
Malthusian Doctrine, 179
population growth, 179
satellite circling, Earth, 181
statistics, 179

F
Female/male staff ratio, 103

G
Geometric distribution

chance of throwing, 193
cumulative values, 194
door-to-door salesman, 193
exponential, 193
house calls, 194

H
Hadoop distributed file system (HDFS), 247

HDFS. See Hadoop distributed file  
system (HDFS)

I, J
Index numbers, 34, 42

Irregular relationships
financial data, 143
FTSE 100 financial index, 142

FTSE 100 index, 143
product-moment correlation  

coefficient, 144
profits growth graph, 145
seasonal variations, 144
temperature, 146
time, 146
to-and-fro variability, 142

K
Kendall rank correlation coefficient, 113

L
Latin and Graeco-Latin squares

in agricultural experiments, 164–165
arrangement, 164
dependent variable, 164
independent variable, 164
medical studies, 165
variances, 164
Youden square, 166

Levels of significance
confidence limit, 90
degrees of freedom, 90
hypothesis testing, 89
null hypothesis, 89
one-tailed/two-tailed, 90
pedantic convention, 90
populations, 89

Linear relationships
confidence intervals, 136
correlation between two  

variables, 129–130
correlation coefficient, 135
definition, 127
degree of judgment, 135
degrees of reliability, 136
error bar, 136
independent variable and dependent 

variable, 133
linear regression, 131–132
negative correlation, 128
non-parametric, 137
numerical data, 136–137
one-tail and two-tail test, 136
positive correlation, 128
prediction intervals, 136
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product-moment correlation  
coefficient, 135

scale changing and origin  
suppressing, 129

slope, 131
straight-line conversion graph, 128
usefulness of correlation, 135
vertical error bar, 136

Line graphs, 126

M
Marketing strategy, 132, 146

Mean, numerical data
F-test, 96
null hypothesis, 95
population variance, 97
production line, 95
Single Value, 97
standard deviation, 95
standard error, 95
t-distribution, 96
Z-score, 95, 97

Multidimensional contingency tables
independent variables, 167
interaction, 169
logit analysis, 169
log-linear, 169
log odds, 169
residual variability, 169
three-way contingency table, 167

Multiple regression
canonical correlation, 158
dependent variable, 157
descriptive variables, 158
dummy variables, 158
multiple coefficient of  

determination, 158
non-linear relationships, 157
total population, 158
t-test, 158

Multivariate analysis of variance (MANOVA)
Hotelling-Lawley trace, 170
Pillai-Bartlett trace, 170
Roy’s maximum root, 170
variance ratio, 170
Wilks’s lambda, 170

Multivariate data
ANOVA (see Analysis of variance 

(ANOVA))
cluster analysis, 175–176
computer processing, 156
conjoint analysis, 170–171
customer evaluation, 175
data mining, 156
dependent variable, 156
dummy variable, 156
factor analysis, 175
independent variable, 156
interdependence methods, 175
Latin and Graeco-Latin squares (see 

Latin and Graeco-Latin squares)
multidimensional contingency tables (see 

Multidimensional contingency tables)
multiple discriminant analysis, 176
multiple regression (see Multiple 

regression)
principal components analysis, 175
proximity maps

correspondence analysis, 171
degrees of association, 173
descriptive variables, 171
multidimensional scaling, 173
two-way contingency table, 171–173

structural equation modeling, 174–175

N
Neural networks

brain, 238
hidden nodes, 239
nodes, 238
overfitting, 239
probability, hospital treatment, 240
weighting factor, 239

Nominal data
bar chart format, 47
bar chart, medals won by  

sports club, 52–53
categories, 47
chi-squared test, 150–152
contingency test, 150
misleading visual comparison, two 

factories outputs, 51
patients, treatment, 149
pictograms, 50–51
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pie chart and bar chart, same data, 49
pie charts and stacked bar chart,  

same data, 49–50
Venn diagrams, 52
visual effects, origin suppressing and 

vertical axis breaking, 47–48
Yule’s coefficient of association, 150

Nonlinear relationships
computer packages, 141
data transformation, 138–140
linear relationship and, 141
polynomial regression, 141
polynomials, 141
raw data, 138–140
re-plotted data, 137
Titus–Bode law, 140
trial-and-error procedures, 141

Normal distribution, 184–185
averages, 68–70
central clustering, 62, 66
chi-squared distribution, 67
chi-squared test, 68
confidence intervals, 57, 84–86
construction, grouped data, 60
continuous curve, 64
cumulative frequency, 57–58
data collection, 65
data sample, 55
degrees of freedom, 67
density, frequency, 64
discrete, 58
estimated population, 83–84
frequency and cumulative  

frequency, 60
Gaussian curve, 62
goodness-of-fit test, 66
grouped data

bands, 75
bar chart and histogram, 77
continuous data curves, 77
frequency density, 77
relative frequency, 76

height distributions, 62–63
histograms, 56
interquartile, 61
Kolmogorov-Smirnov test, 68
measurement repetition, 64
median, 60

ogive, 59
pooling and weighting (see Pooling and 

weighting, normal distribution)
positive and negative distributions, 61
probability distribution, 55
random fluctuations, 65
relative frequency, 56
spread of data (see Spread of data, 

normal distribution)
standard normal distribution, 64
statistical tests, 68
theoretical distribution, 65
total number, data, 55
uniform distribution, 67

Null hypothesis, 109
numerical data, 92
one-tailed and two-tailed test, 92
standard normal distribution, 92
statistical significance, 91
test statistic, 92

Numbers
negative numbers, 37–38
prefixes, 35–37
prefix nano, 36
standard index form, 35
superscripts, 36

Numerical data, 34
ANOVA, 99
bands, 94
degrees of freedom, 100
managing, 94, 101
mean (see Mean, numerical data)
normal distribution (see Normal 

distribution)
null hypothesis, 93, 101
one-tailed and two-tailed tests, 94
pooled variance, 100
population variance, 99
sample variance, 100
standard deviations, 94
Student’s-t, 98
t-values, 98
variances, 96, 98

O
One-sample runs test, 32

Ordinal data, 149, 152
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P
Patient-Centered Outcomes Research 

Institute (PCORI), 253

PCORI. See Patient-Centered Outcomes 
Research Institute (PCORI)

Percentages, 40–42

Pictograms, 50–51

Players, big data
Apache Cassandra, 248
database management, 247
HDFS, 247
MapReduce, 247
sensor data, 247

Poisson distribution, 189, 191

Pooling and weighting, normal distribution
food, 82–83
household index, 79
Laspeyres index, 79
overall mean waiting time, 78
Paasche index, 79
Retail Price Index, 79
Simpson’s paradox, 80–81
weighted mean, 78

Prediction intervals, 136

Predictive analytics
accuracy and coverage, 233, 235
clustering, 237–238
database, 235
decision trees, 233–234
degree of confidence, 232
development, rules, 235
electrical grid inspection, 241
machine learning algorithms, 241
neural networks, 238–240
nonlinear regression, 233
numerical variables, 229
One Rule (1R), 230, 237
overfitting, 233, 240
PRISM, 233
probability, 229, 231
relative probability, 232
set of combinations, 236
total column, 231
training data, 229, 233

Probability
“and”/“or” rule, 15
“both”, “either” and “neither” events, 16
coin tossing and dice throwing, 14
conditional (see Conditional probability)
definition, 13–14
failures, 17
multiplication of, 15
statistical calculation, law  

psychologist, 15
tree diagram, various outcomes, 16–17

Product-moment correlation  
coefficient, 135

Prosecutor’s fallacy, 19

Q
Quota sampling, 30

R
Ranks

Kruskal-Wallis test, 111
Mann-Whitney U-test, 109
nonparametric, 109
ordinal data, 109
two-tail test, 110
value, 110
Wilcoxon matched-pairs  

rank-sum test, 111
Wilcoxon rank-sum test, 109–110

Raw data, 126
description, 33
descriptive data, 33–34
distribution, 34
format of numbers (see Numbers)
index numbers, 34, 42
numerical data, 34
percentages, 40–42
rounding, 38–40

Regression, 197–198

Reliability
alarm bells, 212, 217
description, 211
distributions, 216
practical complications, 217
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principles
chain links, 212
data, 216
machines and systems, 211
probability, wire rope, 211
reliance, 213
series and/or parallel, 214–215
sprinkler system, 213–214

Repeated measurements, sampling, 27

Resampling methods, 31

Rod Craig, Jenson’s Switches, 21

Rounding, raw data, 38–40

S
Sampling

cluster, 30
databases, 30
data sequences, 31–32
problems

arrangement problems, 26
hedgehog population, 26
monthly profits, company, 25
older respondents, 27

quota, 30
repeated measurements, 27
resampling methods, 31
sequential, 30
simple random, 27–28
stratified random, 29
systematic, 28

Sampling by attribute, 207–208

Sampling by variable
cumulative sum or CuSum chart, 208
diameter, steel tubes, 205
expressions yield, 207
warning and action limits, 207

Sequential sampling, 30

Simple random sampling, 27–28

Single proportion
binary measure, 104
binomial distribution, 104–106
null hypothesis, 104
values of probability, 104
Z-score, 104

Spearman rank correlation  
coefficient, 112

Spread of data, normal distribution
height, 75
probabilities, 73–74
quartiles, 70
standard deviation, 70–71
total area, curve, 72
variance, 72

Standard index form, 35

Storks and birth rates
America, 122
astrology, 121
Copenhagen, 122
drug, 122
Germany and Netherlands, 122
medical treatment, 122
science and technology, 121
Southern hemisphere, 123
statistics, 123
vehicle, 121

Stratified random sampling, 29

Structural equation modeling, 174–175

Systematic sampling, 28

T
Time series

autocorrelation (see Autocorrelation)
copper and brass, 203
exponential smoothing (see  

Exponential smoothing)
Lawton plumbing supplies, 203
regression, 197–198

U
Uncertainty

6-card sample, 12
customers, 10
mathematical procedures, 10
measurements, 9
opinion polls, 8
population, 11
raw data, 9
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reliability, 8
science and technology disciplines, 9
shoppers, 10
statistical investigations, 7
US State Department, 8
Wabash country, 8
Wikipedia, 9

Uniform distribution, 183

V
Venn diagrams, 52

W, X, Y
Weibull distribution, 195

Z
Z-score, 109
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apress Business: the unbiased Source of Business 
information 
apress business books provide essential information and practical advice, 
each written for practitioners by recognized experts. Busy managers and 
professionals in all areas of the business world—and at all levels of technical 
sophistication—look to our books for the actionable ideas and tools they 
need to solve problems, update and enhance their professional skills, make 
their work lives easier, and capitalize on opportunity. 

Whatever the topic on the business spectrum—entrepreneurship, finance, 
sales, marketing, management, regulation, information technology, among 
others—apress has been praised for providing the objective information 
and unbiased advice you need to excel in your daily work life. our authors 
have no axes to grind; they understand they have one job only—to deliver 
up-to-date, accurate information simply, concisely, and with deep insight that 
addresses the real needs of our readers.

it is increasingly hard to find information—whether in the news media, on the 
internet, and now all too often in books—that is even-handed and has your 
best interests at heart. We therefore hope that you enjoy this book, which 
has been carefully crafted to meet our standards of quality and unbiased 
coverage.

We are always interested in your feedback or ideas for new titles. Perhaps 
you’d even like to write a book yourself. Whatever the case, reach out to us 
at editorial@apress.com and an editor will respond swiftly. incidentally, at 
the back of this book, you will find a list of useful related titles. Please visit 
us at www.apress.com to sign up for newsletters and discounts on future 
purchases. 

The Apress Business Team
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Preface
i am not a statistician, so it may seem odd that i have put together a book on 
statistics. some explanation is required.

in my work, first as a research scientist and then as a manager of engineering 
departments, i needed to use basic statistics and to have some appreciation of 
the more complex statistical methods. With a limited education in statistics,  
i struggled to find textbooks that gave me what i needed concisely and in 
a way that i could readily understand. i have sympathy for those who find 
themselves in a similar situation. i have also worked for nearly twenty years as 
a private tutor, and the one-to-one contact with students has confirmed the 
difficulties that can arise in coming to grips with statistics.

in addition, i have sympathy for statisticians. they do an excellent job but they 
get a bad press. the general view is that they can fiddle around with numbers 
and prove anything they wish to prove. i feel concerned for the majority of 
the population who hold this general perception, and i would like to see them 
achieve a better understanding of statistics. We have figures thrown at us, 
supposedly proving statements ranging from the trivial to the life-threatening,  
and often contradictory, and this helps to reinforce the prejudices.

this book is the result of these experiences and concerns. it is the book i 
have dreamed of, the book i wanted and couldn’t find many years ago. it is for 
those who want an understanding of basic statistics and an appreciation of 
more advanced methods. it is, as the title indicates, for decision makers—but 
not only for the decision makers in business and industry but also for each 
one of us struggling to make sense of the statistics forced on us daily in shops, 
in newspapers, and on television. the book is also in praise of statisticians and 
the work they do and seeks to bring a little more understanding and respect 
for statistics among the general public. it is a book to enjoy, not struggle with, 
written by someone who really does understand where the difficulties are.

—Peter Kenny
Lichfield, uK

kenny.peter@physics.org

http://kenny.peter@physics.org
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